These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 10530019)

  • 41. Hearing impairment induces frequency-specific adjustments in auditory spatial tuning in the optic tectum of young owls.
    Gold JI; Knudsen EI
    J Neurophysiol; 1999 Nov; 82(5):2197-209. PubMed ID: 10561399
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of auditory localization cues on neuronal activity in the auditory thalamus of the cat.
    Ivarsson C; De Ribaupierre Y; De Ribaupierre F
    J Neurophysiol; 1988 Feb; 59(2):586-606. PubMed ID: 3351575
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sound localization during homotopic and heterotopic bilateral cooling deactivation of primary and nonprimary auditory cortical areas in the cat.
    Malhotra S; Lomber SG
    J Neurophysiol; 2007 Jan; 97(1):26-43. PubMed ID: 17035367
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cortical synthesis of azimuth-sensitive single-unit responses with nonmonotonic level tuning: a thalamocortical comparison in the cat.
    Barone P; Clarey JC; Irons WA; Imig TJ
    J Neurophysiol; 1996 Mar; 75(3):1206-20. PubMed ID: 8867129
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Numerical value biases sound localization.
    Golob EJ; Lewald J; Getzmann S; Mock JR
    Sci Rep; 2017 Dec; 7(1):17252. PubMed ID: 29222526
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Independence of frequency channels in auditory temporal gap detection.
    Phillips DP; Hall SE
    J Acoust Soc Am; 2000 Dec; 108(6):2957-63. PubMed ID: 11144587
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Segregated processing of auditory motion and auditory location: an ERP mapping study.
    Ducommun CY; Murray MM; Thut G; Bellmann A; Viaud-Delmon I; Clarke S; Michel CM
    Neuroimage; 2002 May; 16(1):76-88. PubMed ID: 11969319
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The three-channel model of sound localization mechanisms: interaural time differences.
    Dingle RN; Hall SE; Phillips DP
    J Acoust Soc Am; 2013 Jan; 133(1):417-24. PubMed ID: 23297913
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Asymmetrical representation of auditory space in human cortex.
    Salminen NH; Tiitinen H; Miettinen I; Alku P; May PJ
    Brain Res; 2010 Jan; 1306():93-9. PubMed ID: 19799877
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evidence for cue-independent spatial representation in the human auditory cortex during active listening.
    Higgins NC; McLaughlin SA; Rinne T; Stecker GC
    Proc Natl Acad Sci U S A; 2017 Sep; 114(36):E7602-E7611. PubMed ID: 28827357
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Coding for auditory space in the nucleus of the brachium of the inferior colliculus in the ferret.
    Schnupp JW; King AJ
    J Neurophysiol; 1997 Nov; 78(5):2717-31. PubMed ID: 9356421
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparison of midbrain and thalamic space-specific neurons in barn owls.
    Pérez ML; Peña JL
    J Neurophysiol; 2006 Feb; 95(2):783-90. PubMed ID: 16424454
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Auditory spatial processing in the human cortex.
    Salminen NH; Tiitinen H; May PJ
    Neuroscientist; 2012 Dec; 18(6):602-12. PubMed ID: 22492193
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Neuromagnetic recordings reveal the temporal dynamics of auditory spatial processing in the human cortex.
    Tiitinen H; Salminen NH; Palomäki KJ; Mäkinen VT; Alku P; May PJ
    Neurosci Lett; 2006 Mar; 396(1):17-22. PubMed ID: 16343772
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Audio-spatial deficits in humans: differential effects associated with left versus right hemisphere parietal damage.
    Pinek B; Duhamel JR; Cavé C; Brouchon M
    Cortex; 1989 Jun; 25(2):175-86. PubMed ID: 2758845
    [TBL] [Abstract][Full Text] [Related]  

  • 56. High-acuity spatial stream segregation.
    Middlebrooks JC
    Adv Exp Med Biol; 2013; 787():491-9. PubMed ID: 23716256
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Representation of sound source direction in the superior colliculus of the guinea pig in a virtual auditory environment.
    Sterbing SJ; Hartung K; Hoffmann KP
    Exp Brain Res; 2002 Feb; 142(4):570-7. PubMed ID: 11845252
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Natural boundaries in gap detection are related to categorical perception of stop consonants.
    Elangovan S; Stuart A
    Ear Hear; 2008 Oct; 29(5):761-74. PubMed ID: 18769272
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sound localization after unilateral lesions of inferior colliculus in the ferret (Mustela putorius).
    Kelly JB; Kavanagh GL
    J Neurophysiol; 1994 Mar; 71(3):1078-87. PubMed ID: 8201403
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Auditory spatial tuning of cortical neurons is sharpened in cats with early blindness.
    Korte M; Rauschecker JP
    J Neurophysiol; 1993 Oct; 70(4):1717-21. PubMed ID: 8283227
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.