These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 10530019)

  • 81. Minimum audible angle thresholds obtained under conditions in which the precedence effect is assumed to operate.
    Perrott DR; Marlborough K; Merrill P; Strybel TZ
    J Acoust Soc Am; 1989 Jan; 85(1):282-8. PubMed ID: 2921410
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Comparison of auditory spatial bisection and minimum audible angle in front, lateral, and back space.
    Aggius-Vella E; Kolarik AJ; Gori M; Cirstea S; Campus C; Moore BCJ; Pardhan S
    Sci Rep; 2020 Apr; 10(1):6279. PubMed ID: 32286362
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Vertical and horizontal sound localization in primates.
    Brown CH; Schessler T; Moody D; Stebbins W
    J Acoust Soc Am; 1982 Dec; 72(6):1804-11. PubMed ID: 7153427
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Discrimination of sound source velocity in human listeners.
    Carlile S; Best V
    J Acoust Soc Am; 2002 Feb; 111(2):1026-35. PubMed ID: 11863159
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Six Degrees of Auditory Spatial Separation.
    Carlile S; Fox A; Orchard-Mills E; Leung J; Alais D
    J Assoc Res Otolaryngol; 2016 Jun; 17(3):209-21. PubMed ID: 27033087
    [TBL] [Abstract][Full Text] [Related]  

  • 86. A precedence effect in the perception of inter-aural cross correlation.
    Aoki S; Houtgast T
    Hear Res; 1992 Apr; 59(1):25-30. PubMed ID: 1629043
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Spatial and frequency specificity of the ventriloquism aftereffect revisited.
    Bruns P; Röder B
    Psychol Res; 2019 Oct; 83(7):1400-1415. PubMed ID: 29285647
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Monaural and binaural perception of approaching and withdrawing auditory images in humans.
    Altman JA; Andreeva IG
    Int J Audiol; 2004 Apr; 43(4):227-35. PubMed ID: 15250127
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Temporal gap detection measured with multiple sinusoidal markers: effects of marker number, frequency, and temporal position.
    Formby C; Sherlock LP; Li S
    J Acoust Soc Am; 1998 Aug; 104(2 Pt 1):984-98. PubMed ID: 9714918
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Minimum audible angle thresholds for sources varying in both elevation and azimuth.
    Perrott DR; Saberi K
    J Acoust Soc Am; 1990 Apr; 87(4):1728-31. PubMed ID: 2341677
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Sound localization: effects of reverberation time, speaker array, stimulus frequency, and stimulus rise/decay.
    Giguère C; Abel SM
    J Acoust Soc Am; 1993 Aug; 94(2 Pt 1):769-76. PubMed ID: 8370883
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Contextual Lateralization Based on Interaural Level Differences Is Preshaped by the Auditory Periphery and Predominantly Immune Against Sequential Segregation.
    Laback B
    Trends Hear; 2023; 27():23312165231171988. PubMed ID: 37161352
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Localization of noise bands by Old World monkeys.
    Brown CH; Beecher MD; Moody DB; Stebbins WC
    J Acoust Soc Am; 1980 Jul; 68(1):127-32. PubMed ID: 6771312
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Sound localization in wild Norway rats (Rattus norvegicus).
    Heffner HE; Heffner RS
    Hear Res; 1985; 19(2):151-5. PubMed ID: 4055534
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Sound localization in egocentric space following hemispheric lesions.
    Haeske-Dewick H; Canavan AG; Hömberg V
    Neuropsychologia; 1996 Sep; 34(9):937-42. PubMed ID: 8822740
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Humans detect gaps in broadband noise according to effective gap duration without additional cues from abrupt envelope changes.
    Allen PD; Virag TM; Ison JR
    J Acoust Soc Am; 2002 Dec; 112(6):2967-74. PubMed ID: 12509018
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Comparison of different pointing methods for sound localizability measurement in the vision impaired subjects.
    Fujii A; Ohsugi Y; Yamamoto Y; Nakamura T; Sugiura T; Tauchi M
    J Physiol Anthropol; 2007 May; 26(3):381-5. PubMed ID: 17641458
    [TBL] [Abstract][Full Text] [Related]  

  • 98. "I can no longer hear the silence of lamp posts".
    Shephard RH; Howell DA
    Lancet; 1980 Sep; 2(8196):706. PubMed ID: 6106822
    [No Abstract]   [Full Text] [Related]  

  • 99. A framework for designing head-related transfer function distance metrics that capture localization perception.
    Ananthabhotla I; Ithapu VK; Brimijoin WO
    JASA Express Lett; 2021 Apr; 1(4):044401. PubMed ID: 36154203
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Effect of Perceptual Training with Sound-Guided and Kinesthetic Feedback on Human 3D Sound Localization Capabilities.
    Kumari R; Lee S; Shin J; Lee S
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299750
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.