These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 10531210)
1. Identification of a Clostridium perfringens enterotoxin region required for large complex formation and cytotoxicity by random mutagenesis. Kokai-Kun JF; Benton K; Wieckowski EU; McClane BA Infect Immun; 1999 Nov; 67(11):5634-41. PubMed ID: 10531210 [TBL] [Abstract][Full Text] [Related]
2. Deletion analysis of the Clostridium perfringens enterotoxin. Kokai-Kun JF; McClane BA Infect Immun; 1997 Mar; 65(3):1014-22. PubMed ID: 9038311 [TBL] [Abstract][Full Text] [Related]
3. Fine mapping of the N-terminal cytotoxicity region of Clostridium perfringens enterotoxin by site-directed mutagenesis. Smedley JG; McClane BA Infect Immun; 2004 Dec; 72(12):6914-23. PubMed ID: 15557612 [TBL] [Abstract][Full Text] [Related]
4. Identification of a prepore large-complex stage in the mechanism of action of Clostridium perfringens enterotoxin. Smedley JG; Uzal FA; McClane BA Infect Immun; 2007 May; 75(5):2381-90. PubMed ID: 17307943 [TBL] [Abstract][Full Text] [Related]
5. Cysteine-scanning mutagenesis supports the importance of Clostridium perfringens enterotoxin amino acids 80 to 106 for membrane insertion and pore formation. Chen J; Theoret JR; Shrestha A; Smedley JG; McClane BA Infect Immun; 2012 Dec; 80(12):4078-88. PubMed ID: 22966051 [TBL] [Abstract][Full Text] [Related]
6. Clostridium perfringens enterotoxin acts by producing small molecule permeability alterations in plasma membranes. McClane BA Toxicology; 1994 Feb; 87(1-3):43-67. PubMed ID: 8160188 [TBL] [Abstract][Full Text] [Related]
7. Localization of the receptor-binding region of Clostridium perfringens enterotoxin utilizing cloned toxin fragments and synthetic peptides. The 30 C-terminal amino acids define a functional binding region. Hanna PC; Mietzner TA; Schoolnik GK; McClane BA J Biol Chem; 1991 Jun; 266(17):11037-43. PubMed ID: 1645721 [TBL] [Abstract][Full Text] [Related]
8. Noncytotoxic Clostridium perfringens enterotoxin (CPE) variants localize CPE intestinal binding and demonstrate a relationship between CPE-induced cytotoxicity and enterotoxicity. Smedley JG; Saputo J; Parker JC; Fernandez-Miyakawa ME; Robertson SL; McClane BA; Uzal FA Infect Immun; 2008 Aug; 76(8):3793-800. PubMed ID: 18505809 [TBL] [Abstract][Full Text] [Related]
9. Cloning, nucleotide sequencing, and expression of the Clostridium perfringens enterotoxin gene in Escherichia coli. Czeczulin JR; Hanna PC; McClane BA Infect Immun; 1993 Aug; 61(8):3429-39. PubMed ID: 8335373 [TBL] [Abstract][Full Text] [Related]
10. Compositional and stoichiometric analysis of Clostridium perfringens enterotoxin complexes in Caco-2 cells and claudin 4 fibroblast transfectants. Robertson SL; Smedley JG; Singh U; Chakrabarti G; Van Itallie CM; Anderson JM; McClane BA Cell Microbiol; 2007 Nov; 9(11):2734-55. PubMed ID: 17587331 [TBL] [Abstract][Full Text] [Related]
11. An overview of Clostridium perfringens enterotoxin. McClane BA Toxicon; 1996; 34(11-12):1335-43. PubMed ID: 9027990 [TBL] [Abstract][Full Text] [Related]
12. Comparative biochemical and immunocytochemical studies reveal differences in the effects of Clostridium perfringens enterotoxin on polarized CaCo-2 cells versus Vero cells. Singh U; Mitic LL; Wieckowski EU; Anderson JM; McClane BA J Biol Chem; 2001 Sep; 276(36):33402-12. PubMed ID: 11445574 [TBL] [Abstract][Full Text] [Related]
13. RIP1, RIP3, and MLKL Contribute to Cell Death Caused by Clostridium perfringens Enterotoxin. Shrestha A; Mehdizadeh Gohari I; McClane BA mBio; 2019 Dec; 10(6):. PubMed ID: 31848291 [No Abstract] [Full Text] [Related]
14. Characterizing the Contributions of Various Clostridium perfringens Enterotoxin Properties to Shrestha A; Navarro MA; Beingesser J; Armien AG; Uzal FA; McClane BA mSphere; 2022 Oct; 7(5):e0027622. PubMed ID: 36069435 [TBL] [Abstract][Full Text] [Related]
15. Studies of Clostridium perfringens enterotoxin action at different temperatures demonstrate a correlation between complex formation and cytotoxicity. McClane BA; Wnek AP Infect Immun; 1990 Sep; 58(9):3109-15. PubMed ID: 2117579 [TBL] [Abstract][Full Text] [Related]
16. A recombinant C-terminal toxin fragment provides evidence that membrane insertion is important for Clostridium perfringens enterotoxin cytotoxicity. Hanna PC; McClane BA Mol Microbiol; 1991 Jan; 5(1):225-30. PubMed ID: 2014001 [TBL] [Abstract][Full Text] [Related]
17. Identification of a claudin-4 residue important for mediating the host cell binding and action of Clostridium perfringens enterotoxin. Robertson SL; Smedley JG; McClane BA Infect Immun; 2010 Jan; 78(1):505-17. PubMed ID: 19884339 [TBL] [Abstract][Full Text] [Related]
18. Mapping of functional regions of Clostridium perfringens type A enterotoxin. Hanna PC; Wieckowski EU; Mietzner TA; McClane BA Infect Immun; 1992 May; 60(5):2110-4. PubMed ID: 1373406 [TBL] [Abstract][Full Text] [Related]
19. Evidence that alterations in small molecule permeability are involved in the Clostridium perfringens type A enterotoxin-induced inhibition of macromolecular synthesis in Vero cells. Hulkower KI; Wnek AP; McClane BA J Cell Physiol; 1989 Sep; 140(3):498-504. PubMed ID: 2550473 [TBL] [Abstract][Full Text] [Related]
20. CaCo-2 cells treated with Clostridium perfringens enterotoxin form multiple large complex species, one of which contains the tight junction protein occludin. Singh U; Van Itallie CM; Mitic LL; Anderson JM; McClane BA J Biol Chem; 2000 Jun; 275(24):18407-17. PubMed ID: 10749869 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]