These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 10531334)
1. Serine 19 of human 6-pyruvoyltetrahydropterin synthase is phosphorylated by cGMP protein kinase II. Scherer-Oppliger T; Leimbacher W; Blau N; Thöny B J Biol Chem; 1999 Oct; 274(44):31341-8. PubMed ID: 10531334 [TBL] [Abstract][Full Text] [Related]
2. Autophosphorylation of cGMP-dependent protein kinase type II. Vaandrager AB; Hogema BM; Edixhoven M; van den Burg CM; Bot AG; Klatt P; Ruth P; Hofmann F; Van Damme J; Vandekerckhove J; de Jonge HR J Biol Chem; 2003 Aug; 278(31):28651-8. PubMed ID: 12764134 [TBL] [Abstract][Full Text] [Related]
3. Autoinhibition and isoform-specific dominant negative inhibition of the type II cGMP-dependent protein kinase. Taylor MK; Ahmed R; Begley M; Uhler MD J Biol Chem; 2002 Oct; 277(40):37242-53. PubMed ID: 12093798 [TBL] [Abstract][Full Text] [Related]
4. Identification of mutations causing 6-pyruvoyl-tetrahydropterin synthase deficiency in four Italian families. Oppliger T; Thöny B; Kluge C; Matasovic A; Heizmann CW; Ponzone A; Spada M; Blau N Hum Mutat; 1997; 10(1):25-35. PubMed ID: 9222757 [TBL] [Abstract][Full Text] [Related]
5. The amino-terminal cyclic nucleotide binding site of the type II cGMP-dependent protein kinase is essential for full cyclic nucleotide-dependent activation. Taylor MK; Uhler MD J Biol Chem; 2000 Sep; 275(36):28053-62. PubMed ID: 10864932 [TBL] [Abstract][Full Text] [Related]
6. Hyperphenylalaninemia due to defects in tetrahydrobiopterin metabolism: molecular characterization of mutations in 6-pyruvoyl-tetrahydropterin synthase. Thöny B; Leimbacher W; Blau N; Harvie A; Heizmann CW Am J Hum Genet; 1994 May; 54(5):782-92. PubMed ID: 8178819 [TBL] [Abstract][Full Text] [Related]
7. KT5823 inhibits cGMP-dependent protein kinase activity in vitro but not in intact human platelets and rat mesangial cells. Burkhardt M; Glazova M; Gambaryan S; Vollkommer T; Butt E; Bader B; Heermeier K; Lincoln TM; Walter U; Palmetshofer A J Biol Chem; 2000 Oct; 275(43):33536-41. PubMed ID: 10922374 [TBL] [Abstract][Full Text] [Related]
8. The type II isoform of cGMP-dependent protein kinase is dimeric and possesses regulatory and catalytic properties distinct from the type I isoforms. Gamm DM; Francis SH; Angelotti TP; Corbin JD; Uhler MD J Biol Chem; 1995 Nov; 270(45):27380-8. PubMed ID: 7593002 [TBL] [Abstract][Full Text] [Related]
9. Structural basis of a novel activity of bacterial 6-pyruvoyltetrahydropterin synthase homologues distinct from mammalian 6-pyruvoyltetrahydropterin synthase activity. Seo KH; Zhuang N; Park YS; Park KH; Lee KH Acta Crystallogr D Biol Crystallogr; 2014 May; 70(Pt 5):1212-23. PubMed ID: 24816091 [TBL] [Abstract][Full Text] [Related]
10. Structural and functional consequences of mutations in 6-pyruvoyltetrahydropterin synthase causing hyperphenylalaninemia in humans. Phosphorylation is a requirement for in vivo activity. Oppliger T; Thöny B; Nar H; Bürgisser D; Huber R; Heizmann CW; Blau N J Biol Chem; 1995 Dec; 270(49):29498-506. PubMed ID: 7493990 [TBL] [Abstract][Full Text] [Related]
11. Regulation of cloned cardiac L-type calcium channels by cGMP-dependent protein kinase. Jiang LH; Gawler DJ; Hodson N; Milligan CJ; Pearson HA; Porter V; Wray D J Biol Chem; 2000 Mar; 275(9):6135-43. PubMed ID: 10692404 [TBL] [Abstract][Full Text] [Related]
12. cGMP-dependent protein kinase I promotes cell apoptosis through hyperactivation of death-associated protein kinase 2. Isshiki K; Matsuda S; Tsuji A; Yuasa K Biochem Biophys Res Commun; 2012 Jun; 422(2):280-4. PubMed ID: 22580283 [TBL] [Abstract][Full Text] [Related]
13. Activation of mitogen-activated protein kinase pathways by cyclic GMP and cyclic GMP-dependent protein kinase in contractile vascular smooth muscle cells. Komalavilas P; Shah PK; Jo H; Lincoln TM J Biol Chem; 1999 Nov; 274(48):34301-9. PubMed ID: 10567406 [TBL] [Abstract][Full Text] [Related]
14. Cyclic GMP kinase II (cGKII) inhibits NHE3 by altering its trafficking and phosphorylating NHE3 at three required sites: identification of a multifunctional phosphorylation site. Chen T; Kocinsky HS; Cha B; Murtazina R; Yang J; Tse CM; Singh V; Cole R; Aronson PS; de Jonge H; Sarker R; Donowitz M J Biol Chem; 2015 Jan; 290(4):1952-65. PubMed ID: 25480791 [TBL] [Abstract][Full Text] [Related]
15. Molecular characterization of 6-pyruvoyl-tetrahydropterin synthase deficiency in Japanese patients. Imamura T; Okano Y; Shintaku H; Hase Y; Isshiki G J Hum Genet; 1999; 44(3):163-8. PubMed ID: 10319579 [TBL] [Abstract][Full Text] [Related]
16. Cysteine-rich protein 2, a novel substrate for cGMP kinase I in enteric neurons and intestinal smooth muscle. Huber A; Neuhuber WL; Klugbauer N; Ruth P; Allescher HD J Biol Chem; 2000 Feb; 275(8):5504-11. PubMed ID: 10681529 [TBL] [Abstract][Full Text] [Related]
17. Identification of a conserved residue responsible for the autoinhibition of cGMP-dependent protein kinase Ialpha and beta. Yuasa K; Michibata H; Omori K; Yanaka N FEBS Lett; 2000 Jan; 466(1):175-8. PubMed ID: 10648836 [TBL] [Abstract][Full Text] [Related]
18. Retrovirus-mediated double transduction of the GTPCH and PTPS genes allows 6-pyruvoyltetrahydropterin synthase-deficient human fibroblasts to synthesize and release tetrahydrobiopterin. Laufs S; Blau N; Thöny B J Neurochem; 1998 Jul; 71(1):33-40. PubMed ID: 9648848 [TBL] [Abstract][Full Text] [Related]
19. Functional regulation of transient receptor potential canonical 7 by cGMP-dependent protein kinase Iα. Yuasa K; Matsuda T; Tsuji A Cell Signal; 2011 Jul; 23(7):1179-87. PubMed ID: 21402151 [TBL] [Abstract][Full Text] [Related]
20. A cGMP-dependent protein kinase assay for high throughput screening based on time-resolved fluorescence resonance energy transfer. Bader B; Butt E; Palmetshofer A; Walter U; Jarchau T; Drueckes P J Biomol Screen; 2001 Aug; 6(4):255-64. PubMed ID: 11689125 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]