BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 10531549)

  • 1. Quantification of responses from proprioceptive neurons in the limbs of the crab, Cancer magister.
    Cooper RL; Hartman HB
    J Exp Zool; 1999 Nov; 284(6):629-36. PubMed ID: 10531549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activity-dependent sensitivity of proprioceptive sensory neurons in the stick insect femoral chordotonal organ.
    DiCaprio RA; Wolf H; Büschges A
    J Neurophysiol; 2002 Nov; 88(5):2387-98. PubMed ID: 12424280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonspiking and spiking proprioceptors in the crab: white noise analysis of spiking CB-chordotonal organ afferents.
    Gamble ER; DiCaprio RA
    J Neurophysiol; 2003 Apr; 89(4):1815-25. PubMed ID: 12611948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasticity and proprioception in insects. I. Responses and cellular properties of individual receptors of the locust metathoracic femoral chordotonal organ.
    Zill SN
    J Exp Biol; 1985 May; 116():435-61. PubMed ID: 4056657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regeneration and molting effects on a proprioceptor organ in the Dungeness crab, Cancer magister.
    Hartman HB; Cooper RL
    J Neurobiol; 1994 May; 25(5):461-71. PubMed ID: 8071655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An analysis of the types of sensory unit present in the PD proprioceptor of decapod crustaceans.
    Mill PJ; Lowe DA
    J Exp Biol; 1972 Apr; 56(2):509-25. PubMed ID: 5022847
    [No Abstract]   [Full Text] [Related]  

  • 7. Role of proprioceptive signals from an insect femur-tibia joint in patterning motoneuronal activity of an adjacent leg joint.
    Hess D; Büschges A
    J Neurophysiol; 1999 Apr; 81(4):1856-65. PubMed ID: 10200220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonspiking and spiking proprioceptors in the crab: nonlinear analysis of nonspiking TCMRO afferents.
    DiCaprio RA
    J Neurophysiol; 2003 Apr; 89(4):1826-36. PubMed ID: 12611947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo analysis of proprioceptive coding and its antidromic modulation in the freely behaving crayfish.
    Le Ray D; Combes D; Déjean C; Cattaert D
    J Neurophysiol; 2005 Aug; 94(2):1013-27. PubMed ID: 15829591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reflex actions of one proprioceptor on the motoneurones of a muscle receptor and their central modulation in the shore crab.
    Head SI; Bush BM
    J Physiol; 1991 Jun; 437():49-62. PubMed ID: 1890645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuromodulation of spike-timing precision in sensory neurons.
    Billimoria CP; DiCaprio RA; Birmingham JT; Abbott LF; Marder E
    J Neurosci; 2006 May; 26(22):5910-9. PubMed ID: 16738233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensory characteristics of the P afferent neurone of the crab thoracic-coxal muscle receptor organ.
    Wildman MH; Cannone AJ
    J Comp Physiol A; 1996 Aug; 179(2):277-89. PubMed ID: 8765562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of potassium and muscle homogenate on proprioceptive responses in crayfish and crab.
    Malloy C; Dayaram V; Martha S; Alvarez B; Chukwudolue I; Dabbain N; Mahmood DD; Goleva S; Hickey T; Ho A; King M; Kington P; Mattingly M; Potter S; Simpson L; Spence A; Uradu H; Van Doorn J; Weineck K; Cooper RL
    J Exp Zool A Ecol Integr Physiol; 2017 Jul; 327(6):366-379. PubMed ID: 29356422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Presynaptic inhibition of exteroceptive afferents by proprioceptive afferents in the terminal abdominal ganglion of the crayfish.
    Newland PL; Aonuma H; Sato M; Nagayama T
    J Neurophysiol; 1996 Aug; 76(2):1047-58. PubMed ID: 8871219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proprioception and tension receptors in crab limbs: student laboratory exercises.
    Majeed ZR; Titlow J; Hartman HB; Cooper R
    J Vis Exp; 2013 Oct; (80):e51050. PubMed ID: 24192613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GABA-immunoreactivity in processes presynaptic to the terminals of afferents from a locust leg proprioceptor.
    Watson AH; Burrows M; Leitch B
    J Neurocytol; 1993 Jul; 22(7):547-57. PubMed ID: 8410076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of neurons controlling movements of a locust hind leg: Wiener kernel analysis of the responses of proprioceptive afferents.
    Kondoh Y; Okuma J; Newland PL
    J Neurophysiol; 1995 May; 73(5):1829-42. PubMed ID: 7623084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmacological profiling of stretch activated channels in proprioceptive neurons.
    McCubbin S; Jeoung A; Waterbury C; Cooper RL
    Comp Biochem Physiol C Toxicol Pharmacol; 2020 Jul; 233():108765. PubMed ID: 32305458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Replacement of an inherited stretch receptor by a newly evolved stretch receptor in hippid sand crabs.
    Paul DH; Wilson LJ
    J Comp Neurol; 1994 Dec; 350(1):150-60. PubMed ID: 7860798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cutaneous afferents provide information about knee joint movements in humans.
    Edin B
    J Physiol; 2001 Feb; 531(Pt 1):289-97. PubMed ID: 11179411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.