These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 10531643)

  • 1. Production of 2,3-butanediol by newly isolated Enterobacter cloacae.
    Saha BC; Bothast RJ
    Appl Microbiol Biotechnol; 1999 Sep; 52(3):321-6. PubMed ID: 10531643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of 2,3-butanediol production by Enterobacter cloacae in simultaneous saccharification and fermentation of corncob residue.
    Zhang CY; Peng XP; Li W; Guo XW; Xiao DG
    Biotechnol Appl Biochem; 2014; 61(5):501-9. PubMed ID: 24750278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2R,3R)-2,3-butanediol from lignocellulose-derived sugars.
    Li L; Li K; Wang Y; Chen C; Xu Y; Zhang L; Han B; Gao C; Tao F; Ma C; Xu P
    Metab Eng; 2015 Mar; 28():19-27. PubMed ID: 25499652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient 2,3-butanediol production from cassava powder by a crop-biomass-utilizer, Enterobacter cloacae subsp. dissolvens SDM.
    Wang A; Xu Y; Ma C; Gao C; Li L; Wang Y; Tao F; Xu P
    PLoS One; 2012; 7(7):e40442. PubMed ID: 22792324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of sodium percarbonate pretreatment for improving 2,3-butanediol production from corncob.
    Ma L; Ma Q; Guo G; Du L; Zhang Y; Cui Y; Xiao D
    Prep Biochem Biotechnol; 2018 Mar; 48(3):218-225. PubMed ID: 29528267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced production of 2,3-butanediol from sugarcane molasses.
    Dai JY; Zhao P; Cheng XL; Xiu ZL
    Appl Biochem Biotechnol; 2015 Mar; 175(6):3014-24. PubMed ID: 25586489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Method of 2,3-butanediol production from glycerol and acid-pretreated rice straw hydrolysate by newly isolated strains: pre-evaluation as an integrated biorefinery process.
    Huang CF; Jiang YF; Guo GL; Hwang WS
    Bioresour Technol; 2013 May; 135():446-53. PubMed ID: 23186656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient production of 2,3-butanediol from corn stover hydrolysate by using a thermophilic Bacillus licheniformis strain.
    Li L; Li K; Wang K; Chen C; Gao C; Ma C; Xu P
    Bioresour Technol; 2014 Oct; 170():256-261. PubMed ID: 25151068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High Production of 2,3-Butanediol (2,3-BD) by Raoultella ornithinolytica B6 via Optimizing Fermentation Conditions and Overexpressing 2,3-BD Synthesis Genes.
    Kim T; Cho S; Lee SM; Woo HM; Lee J; Um Y; Seo JH
    PLoS One; 2016; 11(10):e0165076. PubMed ID: 27760200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of 2,3-butanediol from corncob molasses, a waste by-product in xylitol production.
    Wang A; Wang Y; Jiang T; Li L; Ma C; Xu P
    Appl Microbiol Biotechnol; 2010 Jul; 87(3):965-70. PubMed ID: 20376634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effects of pH and oxygen supply on production of 2,3-butanediol from biodiesel-derived glycerol by Bacillus amyloliquefaciens].
    Yang T; Rao Z; Zhang X; Xu M; Xu Z
    Sheng Wu Gong Cheng Xue Bao; 2013 Dec; 29(12):1860-4. PubMed ID: 24660634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a semi-continuous two-stage simultaneous saccharification and fermentation process for enhanced 2,3-butanediol production by Klebsiella oxytoca.
    Moon SK; Kim DK; Park JM; Min J; Song H
    Lett Appl Microbiol; 2018 Apr; 66(4):300-305. PubMed ID: 29315769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of 2,3-butanediol from glucose by GRAS microorganism Bacillus amyloliquefaciens.
    Yang T; Rao Z; Zhang X; Lin Q; Xia H; Xu Z; Yang S
    J Basic Microbiol; 2011 Dec; 51(6):650-8. PubMed ID: 21780143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High production of 2,3-butanediol from glycerol without 1,3-propanediol formation by Raoultella ornithinolytica B6.
    Kim T; Cho S; Woo HM; Lee SM; Lee J; Um Y; Seo JH
    Appl Microbiol Biotechnol; 2017 Apr; 101(7):2821-2830. PubMed ID: 28078395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of Klebsiella pneumoniae based on in silico analysis and its pilot-scale application for 1,3-propanediol and 2,3-butanediol co-production.
    Park JM; Rathnasingh C; Song H
    J Ind Microbiol Biotechnol; 2017 Mar; 44(3):431-441. PubMed ID: 28040869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2,3-butanediol.
    Xu Y; Chu H; Gao C; Tao F; Zhou Z; Li K; Li L; Ma C; Xu P
    Metab Eng; 2014 May; 23():22-33. PubMed ID: 24525331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of 2,3-dihydroxyisovalerate by Enterobacter cloacae.
    Yang Y; Zhang Z; Lu X; Gu J; Wang Y; Yao Y; Liao X; Shi J; Lye G; Baganz F; Hao J
    Enzyme Microb Technol; 2020 Oct; 140():109650. PubMed ID: 32912674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome sequence of Enterobacter cloacae subsp. dissolvens SDM, an efficient biomass-utilizing producer of platform chemical 2,3-butanediol.
    Xu Y; Wang A; Tao F; Su F; Tang H; Ma C; Xu P
    J Bacteriol; 2012 Feb; 194(4):897-8. PubMed ID: 22275097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization and scale-up of 2,3-butanediol production by Bacillus amyloliquefaciens B10-127.
    Yang T; Zhang X; Rao Z; Gu S; Xia H; Xu Z
    World J Microbiol Biotechnol; 2012 Apr; 28(4):1563-74. PubMed ID: 22805938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced production of 2,3-butanediol from glycerol by forced pH fluctuations.
    Petrov K; Petrova P
    Appl Microbiol Biotechnol; 2010 Jul; 87(3):943-9. PubMed ID: 20361325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.