These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 10532561)

  • 1. The influence of hydroxyapatite granules on the healing of a segmental defect filled with autologous bone marrow.
    Wippermann B; Donow C; Schratt HE; den Boer FC; Blokhuis T; Patka P
    Ann Chir Gynaecol; 1999; 88(3):194-7. PubMed ID: 10532561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Healing of segmental bone defects with granular porous hydroxyapatite augmented with recombinant human osteogenic protein-1 or autologous bone marrow.
    den Boer FC; Wippermann BW; Blokhuis TJ; Patka P; Bakker FC; Haarman HJ
    J Orthop Res; 2003 May; 21(3):521-8. PubMed ID: 12706026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autogeneic bone marrow and porous biphasic calcium phosphate ceramic for segmental bone defects in the canine ulna.
    Grundel RE; Chapman MW; Yee T; Moore DC
    Clin Orthop Relat Res; 1991 May; (266):244-58. PubMed ID: 1850335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Healing of autologous cancellous bone transplants and hydroxylapatite ceramics in tibial segment defects. Value of ultrasonic follow up].
    Wefer J; Wefer A; Schratt HE; Thermann H; Wippermann BW
    Unfallchirurg; 2000 Jun; 103(6):452-61. PubMed ID: 10925647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The evaluation of a biphasic calcium phosphate ceramic for use in grafting long-bone diaphyseal defects.
    Moore DC; Chapman MW; Manske D
    J Orthop Res; 1987; 5(3):356-65. PubMed ID: 3040949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resorbable calcium phosphate particles as a carrier material for bone marrow in an ovine segmental defect.
    Blokhuis TJ; Wippermann BW; den Boer FC; van Lingen A; Patka P; Bakker FC; Haarman HJ
    J Biomed Mater Res; 2000 Sep; 51(3):369-75. PubMed ID: 10880078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects.
    Bruder SP; Kraus KH; Goldberg VM; Kadiyala S
    J Bone Joint Surg Am; 1998 Jul; 80(7):985-96. PubMed ID: 9698003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo effects of modification of hydroxyapatite/collagen composites with and without chondroitin sulphate on bone remodeling in the sheep tibia.
    Schneiders W; Reinstorf A; Biewener A; Serra A; Grass R; Kinscher M; Heineck J; Rehberg S; Zwipp H; Rammelt S
    J Orthop Res; 2009 Jan; 27(1):15-21. PubMed ID: 18634066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone graft substitute using hydroxyapatite scaffold seeded with tissue engineered autologous osteoprogenitor cells in spinal fusion: early result in a sheep model.
    Tan KK; Tan GH; Shamsul BS; Chua KH; Ng MH; Ruszymah BH; Aminuddin BS; Loqman MY
    Med J Malaysia; 2005 Jul; 60 Suppl C():53-8. PubMed ID: 16381285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of silk fibroin/hydroxyapatite composite co-cultured with rabbit bone-marrow stromal cells in the healing of a segmental bone defect.
    Wang G; Yang H; Li M; Lu S; Chen X; Cai X
    J Bone Joint Surg Br; 2010 Feb; 92(2):320-5. PubMed ID: 20130332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Use of bioactive glass ceramics in the treatment of tibial plateau fractures].
    Urban K
    Acta Chir Orthop Traumatol Cech; 2002; 69(5):295-301. PubMed ID: 12557600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [New bone formation following implantation of various hydroxyapatite ceramics. Animal experiment with bore hole models of the sheep tibia].
    Mandelkow HK; Hallfeldt KK; Kessler SB; Gayk M; Siebeck M; Schweiberer L
    Unfallchirurg; 1990 Aug; 93(8):376-9. PubMed ID: 2392690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical and radiological assessment of the influence of rhTGFbeta-3 on bone regeneration in a segmental defect in the ovine tibia: pilot study.
    Maissen O; Eckhardt C; Gogolewski S; Glatt M; Arvinte T; Steiner A; Rahn B; Schlegel U
    J Orthop Res; 2006 Aug; 24(8):1670-8. PubMed ID: 16795047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone marrow stromal cells and their use in regenerating bone.
    Cancedda R; Mastrogiacomo M; Bianchi G; Derubeis A; Muraglia A; Quarto R
    Novartis Found Symp; 2003; 249():133-43; discussion 143-7, 170-4, 239-41. PubMed ID: 12708654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteogenic effect of a gastric pentadecapeptide, BPC-157, on the healing of segmental bone defect in rabbits: a comparison with bone marrow and autologous cortical bone implantation.
    Sebecić B; Nikolić V; Sikirić P; Seiwerth S; Sosa T; Patrlj L; Grabarević Z; Rucman R; Petek M; Konjevoda P; Jadrijević S; Perović D; Slaj M
    Bone; 1999 Mar; 24(3):195-202. PubMed ID: 10071911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The early phase influence of bone marrow concentrate on metaphyseal bone healing.
    Jungbluth P; Hakimi AR; Grassmann JP; Schneppendahl J; Betsch M; Kröpil P; Thelen S; Sager M; Herten M; Wild M; Windolf J; Hakimi M
    Injury; 2013 Oct; 44(10):1285-94. PubMed ID: 23684350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early effect of platelet-rich plasma on bone healing in combination with an osteoconductive material in rat cranial defects.
    Plachokova AS; van den Dolder J; Stoelinga PJ; Jansen JA
    Clin Oral Implants Res; 2007 Apr; 18(2):244-51. PubMed ID: 17348890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preliminary experience with a novel model assessing in vivo mechanical strength of bone grafts and substitute materials.
    Hamson KR; Toth JM; Stiehl JB; Lynch KL
    Calcif Tissue Int; 1995 Jul; 57(1):64-8. PubMed ID: 7671168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tissue engineering of bone: search for a better scaffold.
    Mastrogiacomo M; Muraglia A; Komlev V; Peyrin F; Rustichelli F; Crovace A; Cancedda R
    Orthod Craniofac Res; 2005 Nov; 8(4):277-84. PubMed ID: 16238608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of autogenic and allogenic bone marrow derived mesenchymal stem cells for repair of segmental bone defects in rabbits.
    Udehiya RK; Amarpal ; Aithal HP; Kinjavdekar P; Pawde AM; Singh R; Taru Sharma G
    Res Vet Sci; 2013 Jun; 94(3):743-52. PubMed ID: 23414969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.