These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 10532961)

  • 1. Normal and mutant rhodopsin activation measured with the early receptor current in a unicellular expression system.
    Shukla P; Sullivan JM
    J Gen Physiol; 1999 Nov; 114(5):609-36. PubMed ID: 10532961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-resolved rhodopsin activation currents in a unicellular expression system.
    Sullivan JM; Shukla P
    Biophys J; 1999 Sep; 77(3):1333-57. PubMed ID: 10465746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HEK293S cells have functional retinoid processing machinery.
    Brueggemann LI; Sullivan JM
    J Gen Physiol; 2002 Jun; 119(6):593-612. PubMed ID: 12034766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for the prolonged photoactivated lifetime of an analogue visual pigment containing 11-cis 9-desmethylretinal.
    Corson DW; Cornwall MC; Pepperberg DR
    Vis Neurosci; 1994; 11(1):91-8. PubMed ID: 8011585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical approach to study rhodopsin activation in single cells with early receptor current assay.
    Sullivan JM; Brueggemann L; Shukla P
    Methods Enzymol; 2000; 315():268-93. PubMed ID: 10736708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two realms of dark adaptation.
    Firsov ML; Kolesnikov AV; Golobokova EY; Govardovskii VI
    Vision Res; 2005 Jan; 45(2):147-51. PubMed ID: 15581916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protonation states of membrane-embedded carboxylic acid groups in rhodopsin and metarhodopsin II: a Fourier-transform infrared spectroscopy study of site-directed mutants.
    Fahmy K; Jäger F; Beck M; Zvyaga TA; Sakmar TP; Siebert F
    Proc Natl Acad Sci U S A; 1993 Nov; 90(21):10206-10. PubMed ID: 7901852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Opsin activation of transduction in the rods of dark-reared Rpe65 knockout mice.
    Fan J; Woodruff ML; Cilluffo MC; Crouch RK; Fain GL
    J Physiol; 2005 Oct; 568(Pt 1):83-95. PubMed ID: 15994181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bleaching desensitization: background and current challenges.
    Pepperberg DR
    Vision Res; 2003 Dec; 43(28):3011-9. PubMed ID: 14611937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conditioning light differentially desensitizes rod phototransduction mediated by native and 9-demethyl analog visual pigment.
    Corson DW; Pepperberg DR
    Vis Neurosci; 2003; 20(1):29-36. PubMed ID: 12699081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. All-trans-retinal forms a visible-absorbing pigment with human rod opsin.
    Brueggemann LI; Sullivan JM
    Biochemistry; 2001 Apr; 40(14):4446-53. PubMed ID: 11284701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid charge movements and photosensitivity of visual pigments in salamander rods and cones.
    Makino CL; Taylor WR; Baylor DA
    J Physiol; 1991 Oct; 442():761-80. PubMed ID: 1818565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early receptor current of wild-type and transducin knockout mice: photosensitivity and light-induced Ca2+ release.
    Woodruff ML; Lem J; Fain GL
    J Physiol; 2004 Jun; 557(Pt 3):821-8. PubMed ID: 15073279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Rhodopsin Phosphorylation on Dark Adaptation in Mouse Rods.
    Berry J; Frederiksen R; Yao Y; Nymark S; Chen J; Cornwall C
    J Neurosci; 2016 Jun; 36(26):6973-87. PubMed ID: 27358455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opsin localization and rhodopsin photochemistry in a transgenic mouse model of retinitis pigmentosa.
    Wu TH; Ting TD; Okajima TI; Pepperberg DR; Ho YK; Ripps H; Naash MI
    Neuroscience; 1998 Dec; 87(3):709-17. PubMed ID: 9758235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the primary photointermediates of Drosophila rhodopsin.
    Vought BW; Salcedo E; Chadwell LV; Britt SG; Birge RR; Knox BE
    Biochemistry; 2000 Nov; 39(46):14128-37. PubMed ID: 11087361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The kinetics of regeneration of rhodopsin under enzyme-limited availability of 11-cis retinoid.
    Lamb TD; Corless RM; Pananos AD
    Vision Res; 2015 May; 110(Pt A):23-33. PubMed ID: 25769401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abnormal activation and inactivation mechanisms of rod transduction in patients with autosomal dominant retinitis pigmentosa and the pro-23-his mutation.
    Birch DG; Hood DC; Nusinowitz S; Pepperberg DR
    Invest Ophthalmol Vis Sci; 1995 Jul; 36(8):1603-14. PubMed ID: 7601641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Availability of 11-cis retinal and opsins without chromophore as revealed by small bleaches of rhodopsin in excised albino mouse eyes.
    Ostroy SE; Roberts AE; Knapp-Miller J; Spisak JM
    Vision Res; 2003 Dec; 43(28):3069-73. PubMed ID: 14611943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of 11-cis 13-demethylretinal on phototransduction in bleach-adapted rod and cone photoreceptors.
    Corson DW; Kefalov VJ; Cornwall MC; Crouch RK
    J Gen Physiol; 2000 Aug; 116(2):283-97. PubMed ID: 10919871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.