These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 10533086)

  • 1. High frequency (600 Hz) bursts of spike-like activities generated in the human cerebral somatosensory system.
    Curio G
    Electroencephalogr Clin Neurophysiol Suppl; 1999; 49():56-61. PubMed ID: 10533086
    [No Abstract]   [Full Text] [Related]  

  • 2. EEG oscillations at 600 Hz are macroscopic markers for cortical spike bursts.
    Baker SN; Curio G; Lemon RN
    J Physiol; 2003 Jul; 550(Pt 2):529-34. PubMed ID: 12807983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for a 7- to 9-Hz "sigma" rhythm in the human SII cortex.
    Narici L; Forss N; Jousmäki V; Peresson M; Hari R
    Neuroimage; 2001 Apr; 13(4):662-8. PubMed ID: 11305895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High frequency components in somatosensory evoked potentials.
    Ozaki I; Suzuki C; Yaegashi Y; Baba M; Matsunaga M; Hashimoto I
    Electroencephalogr Clin Neurophysiol Suppl; 1999; 49():52-5. PubMed ID: 10533085
    [No Abstract]   [Full Text] [Related]  

  • 5. Nonlinear interactions of high-frequency oscillations in the human somatosensory system.
    Jaros U; Hilgenfeld B; Lau S; Curio G; Haueisen J
    Clin Neurophysiol; 2008 Nov; 119(11):2647-57. PubMed ID: 18829382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Serial processing in the human somatosensory system.
    Inui K; Wang X; Tamura Y; Kaneoke Y; Kakigi R
    Cereb Cortex; 2004 Aug; 14(8):851-7. PubMed ID: 15054058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time, frequency and volumetric differences of high-frequency neuromagnetic oscillation between left and right somatosensory cortices.
    Kotecha R; Xiang J; Wang Y; Huo X; Hemasilpin N; Fujiwara H; Rose D; deGrauw T
    Int J Psychophysiol; 2009 May; 72(2):102-10. PubMed ID: 19041674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different origins of low- and high-frequency components (600 Hz) of human somatosensory evoked potentials.
    Gobbelé R; Waberski TD; Simon H; Peters E; Klostermann F; Curio G; Buchner H
    Clin Neurophysiol; 2004 Apr; 115(4):927-37. PubMed ID: 15003775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of high-frequency (600 Hz) somatosensory-evoked potentials after rTMS of the primary sensory cortex.
    Restuccia D; Ulivelli M; De Capua A; Bartalini S; Rossi S
    Eur J Neurosci; 2007 Oct; 26(8):2349-58. PubMed ID: 17894818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetoencephalographic study of vibrotactile evoked transient and steady-state responses in human somatosensory cortex.
    Nangini C; Ross B; Tam F; Graham SJ
    Neuroimage; 2006 Oct; 33(1):252-62. PubMed ID: 16884928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human reactions to physical stimulus and the removal of such stimulus as recorded by magnetoencephalography.
    Shirai T; Inoue K; Hashizume A; Nakanishi K; Harada T; Mimori Y; Matsumoto M
    Neurosci Lett; 2004 May; 362(1):10-3. PubMed ID: 15147769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linking 600-Hz "spikelike" EEG/MEG wavelets ("sigma-bursts") to cellular substrates: concepts and caveats.
    Curio G
    J Clin Neurophysiol; 2000 Jul; 17(4):377-96. PubMed ID: 11012041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rate coding and spike-time variability in cortical neurons with two types of threshold dynamics.
    Tateno T; Robinson HP
    J Neurophysiol; 2006 Apr; 95(4):2650-63. PubMed ID: 16551842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-frequency magnetic signals in the human somatosensory cortex.
    Hashimoto I; Mashiko T; Imada T
    Electroencephalogr Clin Neurophysiol Suppl; 1996; 47():67-80. PubMed ID: 9335970
    [No Abstract]   [Full Text] [Related]  

  • 15. Sustained activation of the human SII cortices by stimulus trains.
    Forss N; Narici L; Hari R
    Neuroimage; 2001 Mar; 13(3):497-501. PubMed ID: 11170814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Somatosensory processing in healthy newborns.
    Pihko E; Lauronen L
    Exp Neurol; 2004 Nov; 190 Suppl 1():S2-7. PubMed ID: 15498536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of stimulus properties on low- and high-frequency median nerve somatosensory evoked potentials.
    Gobbelé R; Dieckhöfer A; Thyerlei D; Buchner H; Waberski TD
    J Clin Neurophysiol; 2008 Aug; 25(4):194-201. PubMed ID: 18677183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Centrifugal regulation of human cortical responses to a task-relevant somatosensory signal triggering voluntary movement.
    Kida T; Wasaka T; Inui K; Akatsuka K; Nakata H; Kakigi R
    Neuroimage; 2006 Sep; 32(3):1355-64. PubMed ID: 16806987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamical activities of primary somatosensory cortices studied by magnetoencephalography.
    Kishida K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051906. PubMed ID: 20365005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Volumetric estimation of functional brain regions in small children using spatially filtered magnetoencephalography: differentiating thumb from middle finger.
    Xiang J; Holowka S; Qiao H; Sun B; Chuang S
    Neurol Clin Neurophysiol; 2004 Nov; 2004():110. PubMed ID: 16012596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.