These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 10533923)

  • 1. A new statistical method for transfer coefficient calculations in the framework of the general multiple-compartment model of transport for radionuclides in biological systems.
    Garcia F; Arruda-Neto JD; Manso MV; Helene OM; Vanin VR; Rodriguez O; Mesa J; Likhachev VP; Filho JW; Deppman A; Perez G; Guzman F; de Camargo SP
    Phys Med Biol; 1999 Oct; 44(10):2463-81. PubMed ID: 10533923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a computer code to calculate the distribution of radionuclides within the human body by the biokinetic models of the ICRP.
    Matsumoto M; Yamanaka T; Hayakawa N; Iwai S; Sugiura N
    Radiat Prot Dosimetry; 2015 Mar; 163(4):446-57. PubMed ID: 25061129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The computation of ICRP dose coefficients for intakes of radionuclides with PLEIADES: biokinetic aspects.
    Fell TP
    Radiat Prot Dosimetry; 2007; 127(1-4):220-2. PubMed ID: 17921508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elemental transfer from Chinese soil via the diet to the whole human body.
    Zhu HD; Wu Q; Fan TJ; Liu Q; Zhang W
    J Radiol Prot; 2008 Dec; 28(4):573-80. PubMed ID: 19029593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The suitability of transfer coefficients used for stochastic calculations in radioecology.
    Wirth E; Koehler H; Burkhardt J
    Health Phys; 1985 Dec; 49(6):1165-72. PubMed ID: 4077518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Identification of radiopharmaceutical transport models in functional radionuclide diagnosis].
    Bondareva IB; Narkevich BIa
    Med Radiol (Mosk); 1991; 36(5):36-9. PubMed ID: 2034105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo calculations of absorbed doses in tumours using a modified MOBY mouse phantom for pre-clinical dosimetry studies.
    Larsson E; Ljungberg M; Strand SE; Jönsson BA
    Acta Oncol; 2011 Aug; 50(6):973-80. PubMed ID: 21767199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An investigation into the upward transport of uranium-series radionuclides in soils and uptake by plants.
    Pérez-Sánchez D; Thorne MC
    J Radiol Prot; 2014 Sep; 34(3):545-73. PubMed ID: 24984104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling Considerations for Ingestion Pathway Dose Calculations Using CAP88.
    Stuenkel D
    Health Phys; 2017 Apr; 112(4):343-351. PubMed ID: 28234693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences among Monte Carlo codes in the calculations of voxel S values for radionuclide targeted therapy and analysis of their impact on absorbed dose evaluations.
    Pacilio M; Lanconelli N; Lo MS; Betti M; Montani L; Torres AL; Coca PM
    Med Phys; 2009 May; 36(5):1543-52. PubMed ID: 19544770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Software for empirical building of biokinetic models for normal and decorporation-affected data.
    Miller G; Bertelli L; Klare K; Weber W; Doyle-Eisele M; Guilmette R
    Health Phys; 2012 Oct; 103(4):484-94. PubMed ID: 22929474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intake retention fractions developed from models used in the determination of dose coefficients developed for ICRP publication 68--particulate inhalation.
    Potter CA
    Health Phys; 2002 Nov; 83(5):594-789. PubMed ID: 12455949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dosimetric characterization of radionuclides for systemic tumor therapy: influence of particle range, photon emission, and subcellular distribution.
    Uusijärvi H; Bernhardt P; Ericsson T; Forssell-Aronsson E
    Med Phys; 2006 Sep; 33(9):3260-9. PubMed ID: 17022220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A stylized computational model of the rat for organ dosimetry in support of preclinical evaluations of peptide receptor radionuclide therapy with (90)Y, (111)In, or (177)Lu.
    Konijnenberg MW; Bijster M; Krenning EP; De Jong M
    J Nucl Med; 2004 Jul; 45(7):1260-9. PubMed ID: 15235075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A generic, cross-chemical predictive PBTK model with multiple entry routes running as application in MS Excel; design of the model and comparison of predictions with experimental results.
    Jongeneelen FJ; Berge WF
    Ann Occup Hyg; 2011 Oct; 55(8):841-64. PubMed ID: 21998005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport and fate of radionuclides in aquatic environments--the use of ecosystem modelling for exposure assessments of nuclear facilities.
    Kumblad L; Kautsky U; Naeslund B
    J Environ Radioact; 2006; 87(1):107-29. PubMed ID: 16406229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An optimization strategy for a biokinetic model of inhaled radionuclides.
    Shyr LJ; Griffith WC; Boecker BB
    Fundam Appl Toxicol; 1991 Apr; 16(3):423-34. PubMed ID: 1855616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coincidence summing corrections applied to volume sources.
    Lépy MC; Ferreux L; Pierre S
    Appl Radiat Isot; 2012 Sep; 70(9):2137-40. PubMed ID: 22410298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compartment modelling in nuclear medicine: a new program for the determination of transfer coefficients.
    Hallstadius L
    Nucl Med Commun; 1986 Jun; 7(6):405-14. PubMed ID: 3748484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mathematical study of simple exponential modelling in biochemical processes.
    Mazumdar J; Banerjee M; Teng LY
    Australas Phys Eng Sci Med; 1991 Dec; 14(4):226-33. PubMed ID: 1789775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.