BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 10534735)

  • 1. Latency of Epstein-Barr virus is stabilized by antisense-mediated control of the viral immediate-early gene BZLF-1.
    Prang N; Wolf H; Schwarzmann F
    J Med Virol; 1999 Dec; 59(4):512-9. PubMed ID: 10534735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epstein-Barr virus replicative gene transcription during de novo infection of human thymocytes: simultaneous early expression of BZLF-1 and its repressor RAZ.
    Kelleher CA; Paterson RK; Dreyfus DH; Streib JE; Xu JW; Takase K; Jones JF; Gelfand EW
    Virology; 1995 Apr; 208(2):685-95. PubMed ID: 7747440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interferon regulatory factor 7 is negatively regulated by the Epstein-Barr virus immediate-early gene, BZLF-1.
    Hahn AM; Huye LE; Ning S; Webster-Cyriaque J; Pagano JS
    J Virol; 2005 Aug; 79(15):10040-52. PubMed ID: 16014964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Genome-Wide Epstein-Barr Virus Polyadenylation Map and Its Antisense RNA to EBNA.
    Majerciak V; Yang W; Zheng J; Zhu J; Zheng ZM
    J Virol; 2019 Jan; 93(2):. PubMed ID: 30355690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The BHLF1 Locus of Epstein-Barr Virus Contributes to Viral Latency and B-Cell Immortalization.
    Yetming KD; Lupey-Green LN; Biryukov S; Hughes DJ; Marendy EM; Miranda JL; Sample JT
    J Virol; 2020 Aug; 94(17):. PubMed ID: 32581094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Latency pattern of Epstein-Barr virus and methylation status in Epstein-Barr virus-associated hemophagocytic syndrome.
    Yoshioka M; Kikuta H; Ishiguro N; Endo R; Kobayashi K
    J Med Virol; 2003 Jul; 70(3):410-9. PubMed ID: 12767005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The latency pattern of Epstein-Barr virus infection and viral IL-10 expression in cutaneous natural killer/T-cell lymphomas.
    Xu ZG; Iwatsuki K; Oyama N; Ohtsuka M; Satoh M; Kikuchi S; Akiba H; Kaneko F
    Br J Cancer; 2001 Apr; 84(7):920-5. PubMed ID: 11286472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The lytic transition of Epstein-Barr virus is imitated by recombinant B-cells.
    Marschall M; Alliger P; Schwarzmann F; Bogedain C; Brand M; Reichelt B; Glaser G; Wolf H
    Arch Virol; 1993; 129(1-4):23-33. PubMed ID: 8385916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nasal NK- and T-cell lymphomas share the same type of Epstein-Barr virus latency as nasopharyngeal carcinoma and Hodgkin's disease.
    Chiang AK; Tao Q; Srivastava G; Ho FC
    Int J Cancer; 1996 Nov; 68(3):285-90. PubMed ID: 8903467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epstein-Barr virus lytic replication is controlled by posttranscriptional negative regulation of BZLF1.
    Prang N; Wolf H; Schwarzmann F
    J Virol; 1995 Apr; 69(4):2644-8. PubMed ID: 7884918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human p32: a coactivator for Epstein-Barr virus nuclear antigen-1-mediated transcriptional activation and possible role in viral latent cycle DNA replication.
    Van Scoy S; Watakabe I; Krainer AR; Hearing J
    Virology; 2000 Sep; 275(1):145-57. PubMed ID: 11017796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The SWI/SNF Chromatin Regulator BRG1 Modulates the Transcriptional Regulatory Activity of the Epstein-Barr Virus DNA Polymerase Processivity Factor BMRF1.
    Su MT; Wang YT; Chen YJ; Lin SF; Tsai CH; Chen MR
    J Virol; 2017 May; 91(9):. PubMed ID: 28228591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unique Epstein-Barr virus (EBV) latent gene expression, EBNA promoter usage and EBNA promoter methylation status in chronic active EBV infection.
    Yoshioka M; Kikuta H; Ishiguro N; Ma X; Kobayashi K
    J Gen Virol; 2003 May; 84(Pt 5):1133-1140. PubMed ID: 12692278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interferon-γ-inducible protein 16 (IFI16) is required for the maintenance of Epstein-Barr virus latency.
    Pisano G; Roy A; Ahmed Ansari M; Kumar B; Chikoti L; Chandran B
    Virol J; 2017 Nov; 14(1):221. PubMed ID: 29132393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Latent and lytic Epstein-Barr virus replication strategies.
    Tsurumi T; Fujita M; Kudoh A
    Rev Med Virol; 2005; 15(1):3-15. PubMed ID: 15386591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein kinase C-independent activation of the Epstein-Barr virus lytic cycle.
    Gradoville L; Kwa D; El-Guindy A; Miller G
    J Virol; 2002 Jun; 76(11):5612-26. PubMed ID: 11991990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BZLF1 controlled by family repeat domain induces lytic cytotoxicity in Epstein-Barr virus-positive tumor cells.
    Wang H; Zhao Y; Zeng L; Tang M; El-Deeb A; Li JJ; Cao Y
    Anticancer Res; 2004; 24(1):67-74. PubMed ID: 15015577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of Epstein-Barr virus BamHI-A rightward transcripts in latently infected B cells from peripheral blood.
    Chen H; Smith P; Ambinder RF; Hayward SD
    Blood; 1999 May; 93(9):3026-32. PubMed ID: 10216099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rta of murine gammaherpesvirus 68 reactivates the complete lytic cycle from latency.
    Wu TT; Usherwood EJ; Stewart JP; Nash AA; Sun R
    J Virol; 2000 Apr; 74(8):3659-67. PubMed ID: 10729142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epstein-Barr virus BZLF1 gene, a switch from latency to lytic infection, is expressed as an immediate-early gene after primary infection of B lymphocytes.
    Wen W; Iwakiri D; Yamamoto K; Maruo S; Kanda T; Takada K
    J Virol; 2007 Jan; 81(2):1037-42. PubMed ID: 17079287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.