BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 10535812)

  • 1. Guided tissue fabrication from periosteum using preformed biodegradable polymer scaffolds.
    Thomson RC; Mikos AG; Beahm E; Lemon JC; Satterfield WC; Aufdemorte TB; Miller MJ
    Biomaterials; 1999 Nov; 20(21):2007-18. PubMed ID: 10535812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ovine model for engineering bone segments.
    Cheng MH; Brey EM; Allori A; Satterfield WC; Chang DW; Patrick CW; Miller MJ
    Tissue Eng; 2005; 11(1-2):214-25. PubMed ID: 15738676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Periosteum-guided prefabrication of vascularized bone of clinical shape and volume.
    Cheng MH; Brey EM; Allori AC; Gassman A; Chang DW; Patrick CW; Miller MJ
    Plast Reconstr Surg; 2009 Sep; 124(3):787-795. PubMed ID: 19730297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osseointegration of preformed polymethylmethacrylate craniofacial prostheses coated with bone marrow-impregnated poly (DL-lactic-co-glycolic acid) foam.
    Dean D; Topham NS; Rimnac C; Mikos AG; Goldberg DP; Jepsen K; Redtfeldt R; Liu Q; Pennington D; Ratcheson R
    Plast Reconstr Surg; 1999 Sep; 104(3):705-12. PubMed ID: 10456522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of guided bone formation from periosteum and muscle fascia.
    Brey EM; Cheng MH; Allori A; Satterfield W; Chang DW; Patrick CW; Miller MJ
    Plast Reconstr Surg; 2007 Apr; 119(4):1216-1222. PubMed ID: 17496593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration.
    Widmer MS; Gupta PK; Lu L; Meszlenyi RK; Evans GR; Brandt K; Savel T; Gurlek A; Patrick CW; Mikos AG
    Biomaterials; 1998 Nov; 19(21):1945-55. PubMed ID: 9863528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioabsorbable interbody cages in a sheep cervical spine fusion model.
    Kandziora F; Pflugmacher R; Scholz M; Eindorf T; Schnake KJ; Haas NP
    Spine (Phila Pa 1976); 2004 Sep; 29(17):1845-55; discussion 1856. PubMed ID: 15534403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers.
    Ishaug-Riley SL; Crane-Kruger GM; Yaszemski MJ; Mikos AG
    Biomaterials; 1998 Aug; 19(15):1405-12. PubMed ID: 9758040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of biodegradable polymer scaffolds to engineer trabecular bone.
    Thomson RC; Yaszemski MJ; Powers JM; Mikos AG
    J Biomater Sci Polym Ed; 1995; 7(1):23-38. PubMed ID: 7662615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro and in vivo degradation of porous poly(DL-lactic-co-glycolic acid) foams.
    Lu L; Peter SJ; Lyman MD; Lai HL; Leite SM; Tamada JA; Uyama S; Vacanti JP; Langer R; Mikos AG
    Biomaterials; 2000 Sep; 21(18):1837-45. PubMed ID: 10919687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue engineering of a small hand phalanx with a porously casted polylactic acid-polyglycolic acid copolymer.
    Sedrakyan S; Zhou ZY; Perin L; Leach K; Mooney D; Kim TH
    Tissue Eng; 2006 Sep; 12(9):2675-83. PubMed ID: 16995801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ectopic bone formation by marrow stromal osteoblast transplantation using poly(DL-lactic-co-glycolic acid) foams implanted into the rat mesentery.
    Ishaug-Riley SL; Crane GM; Gurlek A; Miller MJ; Yasko AW; Yaszemski MJ; Mikos AG
    J Biomed Mater Res; 1997 Jul; 36(1):1-8. PubMed ID: 9212383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histological evaluation of osteogenesis of 3D-printed poly-lactic-co-glycolic acid (PLGA) scaffolds in a rabbit model.
    Ge Z; Tian X; Heng BC; Fan V; Yeo JF; Cao T
    Biomed Mater; 2009 Apr; 4(2):021001. PubMed ID: 19208943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manufacture of porous polymer nerve conduits through a lyophilizing and wire-heating process.
    Huang YC; Huang YY; Huang CC; Liu HC
    J Biomed Mater Res B Appl Biomater; 2005 Jul; 74(1):659-64. PubMed ID: 15909301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro-cultivation of human periosteum derived cells in bioresorbable polymer-TCP-composites.
    Arnold U; Lindenhayn K; Perka C
    Biomaterials; 2002 Jun; 23(11):2303-10. PubMed ID: 12013177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro and in vivo comparison of bulk and surface hydrolysis in absorbable polymer scaffolds for tissue engineering.
    Andriano KP; Tabata Y; Ikada Y; Heller J
    J Biomed Mater Res; 1999; 48(5):602-12. PubMed ID: 10490673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstruction of segmental bone defects in the rabbit ulna using periosteum encapsulated mesenchymal stem cells-loaded poly (lactic-co-glycolic acid) scaffolds.
    Zhang X; Qi YY; Zhao TF; Li D; Dai XS; Niu L; He RX
    Chin Med J (Engl); 2012 Nov; 125(22):4031-6. PubMed ID: 23158138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Vivo Evaluation of the Regenerative Capability of Glycylglycine Ethyl Ester-Substituted Polyphosphazene and Poly(lactic-
    Ogueri KS; Ogueri KS; McClinton A; Kan HM; Ude CC; Barajaa MA; Allcock HR; Laurencin CT
    ACS Biomater Sci Eng; 2021 Apr; 7(4):1564-1572. PubMed ID: 33792283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydroxyapatite fiber reinforced poly(alpha-hydroxy ester) foams for bone regeneration.
    Thomson RC; Yaszemski MJ; Powers JM; Mikos AG
    Biomaterials; 1998 Nov; 19(21):1935-43. PubMed ID: 9863527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adenoviral BMP-2 gene transfer in mesenchymal stem cells: in vitro and in vivo bone formation on biodegradable polymer scaffolds.
    Partridge K; Yang X; Clarke NM; Okubo Y; Bessho K; Sebald W; Howdle SM; Shakesheff KM; Oreffo RO
    Biochem Biophys Res Commun; 2002 Mar; 292(1):144-52. PubMed ID: 11890685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.