These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 10535920)

  • 1. Conversion of agonist site to metal-ion chelator site in the beta(2)-adrenergic receptor.
    Elling CE; Thirstrup K; Holst B; Schwartz TW
    Proc Natl Acad Sci U S A; 1999 Oct; 96(22):12322-7. PubMed ID: 10535920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of the CXCR3 chemokine receptor through anchoring of a small molecule chelator ligand between TM-III, -IV, and -VI.
    Rosenkilde MM; Andersen MB; Nygaard R; Frimurer TM; Schwartz TW
    Mol Pharmacol; 2007 Mar; 71(3):930-41. PubMed ID: 17170198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Partial agonism through a zinc-Ion switch constructed between transmembrane domains III and VII in the tachykinin NK(1) receptor.
    Holst B; Elling CE; Schwartz TW
    Mol Pharmacol; 2000 Aug; 58(2):263-70. PubMed ID: 10908293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal ion site engineering indicates a global toggle switch model for seven-transmembrane receptor activation.
    Elling CE; Frimurer TM; Gerlach LO; Jorgensen R; Holst B; Schwartz TW
    J Biol Chem; 2006 Jun; 281(25):17337-17346. PubMed ID: 16567806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PheVI:09 (Phe6.44) as a sliding microswitch in seven-transmembrane (7TM) G protein-coupled receptor activation.
    Valentin-Hansen L; Holst B; Frimurer TM; Schwartz TW
    J Biol Chem; 2012 Dec; 287(52):43516-26. PubMed ID: 23135271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A conserved aromatic lock for the tryptophan rotameric switch in TM-VI of seven-transmembrane receptors.
    Holst B; Nygaard R; Valentin-Hansen L; Bach A; Engelstoft MS; Petersen PS; Frimurer TM; Schwartz TW
    J Biol Chem; 2010 Feb; 285(6):3973-3985. PubMed ID: 19920139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of Asn-293 in stereospecific agonist recognition and in activation of the beta 2-adrenergic receptor.
    Wieland K; Zuurmond HM; Krasel C; Ijzerman AP; Lohse MJ
    Proc Natl Acad Sci U S A; 1996 Aug; 93(17):9276-81. PubMed ID: 8799191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of an allosteric binding site for Zn2+ on the beta2 adrenergic receptor.
    Swaminath G; Lee TW; Kobilka B
    J Biol Chem; 2003 Jan; 278(1):352-6. PubMed ID: 12409304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular and genetic basis of beta2-adrenergic receptor function.
    Liggett SB
    J Allergy Clin Immunol; 1999 Aug; 104(2 Pt 2):S42-6. PubMed ID: 10452787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Connectivity and orientation of the seven helical bundle in the tachykinin NK-1 receptor probed by zinc site engineering.
    Elling CE; Schwartz TW
    EMBO J; 1996 Nov; 15(22):6213-9. PubMed ID: 8947044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermoanaerobacter brockii alcohol dehydrogenase: characterization of the active site metal and its ligand amino acids.
    Bogin O; Peretz M; Burstein Y
    Protein Sci; 1997 Feb; 6(2):450-8. PubMed ID: 9041649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Examination of ligand-induced conformational changes in the beta2 adrenergic receptor.
    Kobilka B; Gether U; Seifert R; Lin S; Ghanouni P
    Life Sci; 1998; 62(17-18):1509-12. PubMed ID: 9585127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex of an active mu-opioid receptor with a cyclic peptide agonist modeled from experimental constraints.
    Fowler CB; Pogozheva ID; Lomize AL; LeVine H; Mosberg HI
    Biochemistry; 2004 Dec; 43(50):15796-810. PubMed ID: 15595835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics of a biophysical model for beta2-adrenergic and G protein-coupled receptor activation.
    Rubenstein LA; Zauhar RJ; Lanzara RG
    J Mol Graph Model; 2006 Dec; 25(4):396-409. PubMed ID: 16574446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a key amino acid of the beta2-adrenergic receptor for high affinity binding of salmeterol.
    Isogaya M; Yamagiwa Y; Fujita S; Sugimoto Y; Nagao T; Kurose H
    Mol Pharmacol; 1998 Oct; 54(4):616-22. PubMed ID: 9765503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of integrin αIIbβ3 ligand binding and signaling by the metal ion binding sites in the β I domain.
    Raborn J; Wang W; Luo BH
    Biochemistry; 2011 Mar; 50(12):2084-91. PubMed ID: 21309594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling GPCR active state conformations: the β(2)-adrenergic receptor.
    Simpson LM; Wall ID; Blaney FE; Reynolds CA
    Proteins; 2011 May; 79(5):1441-57. PubMed ID: 21337626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational constraining of inactive and active States of a seven transmembrane receptor by metal ion site engineering in the extracellular end of transmembrane segment V.
    Rosenkilde MM; David R; Oerlecke I; Benned-Jensen T; Geumann U; Beck-Sickinger AG; Schwartz TW
    Mol Pharmacol; 2006 Dec; 70(6):1892-901. PubMed ID: 16971553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-directed mutagenesis of alpha 2A-adrenergic receptors: identification of amino acids involved in ligand binding and receptor activation by agonists.
    Wang CD; Buck MA; Fraser CM
    Mol Pharmacol; 1991 Aug; 40(2):168-79. PubMed ID: 1678850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal ion enhanced binding of AMD3100 to Asp262 in the CXCR4 receptor.
    Gerlach LO; Jakobsen JS; Jensen KP; Rosenkilde MR; Skerlj RT; Ryde U; Bridger GJ; Schwartz TW
    Biochemistry; 2003 Jan; 42(3):710-7. PubMed ID: 12534283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.