BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 10535932)

  • 21. The iron-induced ferredoxin FdxA of Campylobacter jejuni is involved in aerotolerance.
    van Vliet AH; Baillon MA; Penn CW; Ketley JM
    FEMS Microbiol Lett; 2001 Mar; 196(2):189-93. PubMed ID: 11267778
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Diffraction quality crystals of protein X from Azotobacter vinelandii.
    Diller TC; Shaw A; Isas JM; Burgess BK; Stout CD
    J Mol Biol; 1994 Aug; 241(4):620-1. PubMed ID: 8057382
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of the GAF and central domains of the transcriptional activator VnfA in Azotobacter vinelandii.
    Yoshimitsu K; Takatani N; Miura Y; Watanabe Y; Nakajima H
    FEBS J; 2011 Sep; 278(18):3287-97. PubMed ID: 21752196
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nucleotide sequence and genetic complementation analysis of lep from Azotobacter vinelandii.
    Jock CA; Pulakat L; Lee S; Gavini N
    Biochem Biophys Res Commun; 1997 Oct; 239(2):393-400. PubMed ID: 9344840
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure of ferredoxin I from Azotobacter vinelandii.
    Stout GH; Turley S; Sieker LC; Jensen LH
    Proc Natl Acad Sci U S A; 1988 Feb; 85(4):1020-2. PubMed ID: 3422475
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Azotobacter vinelandii aldehyde dehydrogenase regulated by sigma(54): role in alcohol catabolism and encystment.
    Gama-Castro S; Núñez C; Segura D; Moreno S; Guzmán J; Espín G
    J Bacteriol; 2001 Nov; 183(21):6169-74. PubMed ID: 11591659
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification and mutational analysis of rfbG, the gene encoding CDP-D-glucose-4,6-dehydratase, isolated from free living soil bacterium Azotobacter vinelandii.
    Gavini N; Hausman BS; Pulakat L; Schreiner RP; Williamson JA
    Biochem Biophys Res Commun; 1997 Nov; 240(1):153-61. PubMed ID: 9367902
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of sequences important for recognition of vnf genes by the VnfA transcriptional activator in Azotobacter vinelandii.
    Woodley P; Buck M; Kennedy C
    FEMS Microbiol Lett; 1996 Jan; 135(2-3):213-21. PubMed ID: 8595860
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proton transfer in Azotobacter vinelandii ferredoxin I: entatic Lys84 operates as elastic counterbalance for the proton-carrying Asp15.
    Cherepanov DA; Mulkidjanian AY
    Biochim Biophys Acta; 2001 Jun; 1505(2-3):179-84. PubMed ID: 11334783
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanisms of redox-coupled proton transfer in proteins: role of the proximal proline in reactions of the [3Fe-4S] cluster in Azotobacter vinelandii ferredoxin I.
    Camba R; Jung YS; Hunsicker-Wang LM; Burgess BK; Stout CD; Hirst J; Armstrong FA
    Biochemistry; 2003 Sep; 42(36):10589-99. PubMed ID: 12962482
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hybrid pyruvate dehydrogenase complexes reconstituted from components of the complexes from Escherichia coli and Azotobacter vinelandii.
    de Kok A; Westphal AH
    Eur J Biochem; 1985 Oct; 152(1):35-41. PubMed ID: 3899642
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Site-directed mutagenesis of Azotobacter vinelandii ferredoxin I: cysteine ligation of the [4Fe-4S] cluster with protein rearrangement is preferred over serine ligation.
    Shen B; Jollie DR; Diller TC; Stout CD; Stephens PJ; Burgess BK
    Proc Natl Acad Sci U S A; 1995 Oct; 92(22):10064-8. PubMed ID: 7479727
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulated expression of the nifM of Azotobacter vinelandii in response to molybdenum and vanadium supplements in Burk's nitrogen-free growth medium.
    Lei S; Pulakat L; Gavini N
    Biochem Biophys Res Commun; 1999 Oct; 264(1):186-90. PubMed ID: 10527862
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three-dimensional structure of lipoamide dehydrogenase from Pseudomonas fluorescens at 2.8 A resolution. Analysis of redox and thermostability properties.
    Mattevi A; Obmolova G; Kalk KH; van Berkel WJ; Hol WG
    J Mol Biol; 1993 Apr; 230(4):1200-15. PubMed ID: 8487301
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differences in sensitivity to NADH of purified pyruvate dehydrogenase complexes of Enterococcus faecalis, Lactococcus lactis, Azotobacter vinelandii and Escherichia coli: implications for their activity in vivo.
    Snoep JL; de Graef MR; Westphal AH; de Kok A; Teixeira de Mattos MJ; Neijssel OM
    FEMS Microbiol Lett; 1993 Dec; 114(3):279-83. PubMed ID: 8288104
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Peptidyl-prolyl cis/trans isomerase-independent functional NifH mutant of Azotobacter vinelandii.
    Gavini N; Tungtur S; Pulakat L
    J Bacteriol; 2006 Aug; 188(16):6020-5. PubMed ID: 16885471
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recognition of promoter DNA by subdomain 4.2 of Escherichia coli sigma 70: a knowledge based model of -35 hexamer interaction with 4.2 helix-turn-helix motif.
    Reddy BV; Gopal V; Chatterji D
    J Biomol Struct Dyn; 1997 Feb; 14(4):407-19. PubMed ID: 9172641
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein-protein recognition mediated by a mini-protein domain: possible evolutionary significance.
    Brocklehurst SM; Kalia YN; Perham RN
    Trends Biochem Sci; 1994 Sep; 19(9):360-1. PubMed ID: 7985228
    [No Abstract]   [Full Text] [Related]  

  • 39. Self-association of the pyruvate dehydrogenase complex from Azotobacter vinelandii in the presence of polyethylene glycol.
    Bosma HJ; Voordouw G; De Kok A; Veeger C
    FEBS Lett; 1980 Nov; 120(2):179-82. PubMed ID: 7439395
    [No Abstract]   [Full Text] [Related]  

  • 40. Binding and dissociation of the pyruvate dehydrogenase complex of Azotobacter vinelandii on thiol--Sepharose.
    de Graaf-Hess AC; de Kok A
    FEBS Lett; 1982 Jul; 143(2):261-4. PubMed ID: 7117532
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.