BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 10535942)

  • 1. Opening of a monomer-monomer interface of the trimeric bacteriophage T4-coded GP45 sliding clamp is required for clamp loading onto DNA.
    Latham GJ; Dong F; Pietroni P; Dozono JM; Bacheller DJ; von Hippel PH
    Proc Natl Acad Sci U S A; 1999 Oct; 96(22):12448-53. PubMed ID: 10535942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tracking sliding clamp opening and closing during bacteriophage T4 DNA polymerase holoenzyme assembly.
    Alley SC; Abel-Santos E; Benkovic SJ
    Biochemistry; 2000 Mar; 39(11):3076-90. PubMed ID: 10715129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence monitoring of T4 polymerase holoenzyme accessory protein interactions during loading of the sliding clamp onto the template-primer junction.
    Latham GJ; Pietroni P; Dong F; Young MC; von Hippel PH
    J Mol Biol; 1996 Dec; 264(3):426-39. PubMed ID: 8969295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural analyses of gp45 sliding clamp interactions during assembly of the bacteriophage T4 DNA polymerase holoenzyme. II. The Gp44/62 clamp loader interacts with a single defined face of the sliding clamp ring.
    Latham GJ; Bacheller DJ; Pietroni P; von Hippel PH
    J Biol Chem; 1997 Dec; 272(50):31677-84. PubMed ID: 9395509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural analyses of gp45 sliding clamp interactions during assembly of the bacteriophage T4 DNA polymerase holoenzyme. I. Conformational changes within the gp44/62-gp45-ATP complex during clamp loading.
    Pietroni P; Young MC; Latham GJ; von Hippel PH
    J Biol Chem; 1997 Dec; 272(50):31666-76. PubMed ID: 9395508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sliding clamp of the bacteriophage T4 polymerase has open and closed subunit interfaces in solution.
    Alley SC; Shier VK; Abel-Santos E; Sexton DJ; Soumillion P; Benkovic SJ
    Biochemistry; 1999 Jun; 38(24):7696-709. PubMed ID: 10387009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Creating a dynamic picture of the sliding clamp during T4 DNA polymerase holoenzyme assembly by using fluorescence resonance energy transfer.
    Trakselis MA; Alley SC; Abel-Santos E; Benkovic SJ
    Proc Natl Acad Sci U S A; 2001 Jul; 98(15):8368-75. PubMed ID: 11459977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural analyses of gp45 sliding clamp interactions during assembly of the bacteriophage T4 DNA polymerase holoenzyme. III. The Gp43 DNA polymerase binds to the same face of the sliding clamp as the clamp loader.
    Latham GJ; Bacheller DJ; Pietroni P; von Hippel PH
    J Biol Chem; 1997 Dec; 272(50):31685-92. PubMed ID: 9395510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clamp loading, unloading and intrinsic stability of the PCNA, beta and gp45 sliding clamps of human, E. coli and T4 replicases.
    Yao N; Turner J; Kelman Z; Stukenberg PT; Dean F; Shechter D; Pan ZQ; Hurwitz J; O'Donnell M
    Genes Cells; 1996 Jan; 1(1):101-13. PubMed ID: 9078370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple ATP binding is required to stabilize the "activated" (clamp open) clamp loader of the T4 DNA replication complex.
    Pietroni P; von Hippel PH
    J Biol Chem; 2008 Oct; 283(42):28338-53. PubMed ID: 18676368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissection of the ATP-driven reaction cycle of the bacteriophage T4 DNA replication processivity clamp loading system.
    Pietroni P; Young MC; Latham GJ; von Hippel PH
    J Mol Biol; 2001 Jun; 309(4):869-91. PubMed ID: 11399065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assembly of a functional replication complex without ATP hydrolysis: a direct interaction of bacteriophage T4 gp45 with T4 DNA polymerase.
    Reddy MK; Weitzel SE; von Hippel PH
    Proc Natl Acad Sci U S A; 1993 Apr; 90(8):3211-5. PubMed ID: 8475061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rules governing the efficiency and polarity of loading a tracking clamp protein onto DNA: determinants of enhancement in bacteriophage T4 late transcription.
    Sanders GM; Kassavetis GA; Geiduschek EP
    EMBO J; 1995 Aug; 14(16):3966-76. PubMed ID: 7664736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An alternative clamp loading pathway via the T4 clamp loader gp44/62-DNA complex.
    Zhuang Z; Berdis AJ; Benkovic SJ
    Biochemistry; 2006 Jul; 45(26):7976-89. PubMed ID: 16800623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The kinetic mechanism of formation of the bacteriophage T4 DNA polymerase sliding clamp.
    Young MC; Weitzel SE; von Hippel PH
    J Mol Biol; 1996 Dec; 264(3):440-52. PubMed ID: 8969296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-molecule investigation of the T4 bacteriophage DNA polymerase holoenzyme: multiple pathways of holoenzyme formation.
    Smiley RD; Zhuang Z; Benkovic SJ; Hammes GG
    Biochemistry; 2006 Jul; 45(26):7990-7. PubMed ID: 16800624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of DNA-tracking by two sliding-clamp proteins.
    Fu TJ; Sanders GM; O'Donnell M; Geiduschek EP
    EMBO J; 1996 Aug; 15(16):4414-22. PubMed ID: 8861968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of the DNA polymerase processivity factor of T4 bacteriophage.
    Moarefi I; Jeruzalmi D; Turner J; O'Donnell M; Kuriyan J
    J Mol Biol; 2000 Mar; 296(5):1215-23. PubMed ID: 10698628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How a DNA polymerase clamp loader opens a sliding clamp.
    Kelch BA; Makino DL; O'Donnell M; Kuriyan J
    Science; 2011 Dec; 334(6063):1675-80. PubMed ID: 22194570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissecting the order of bacteriophage T4 DNA polymerase holoenzyme assembly.
    Sexton DJ; Kaboord BF; Berdis AJ; Carver TE; Benkovic SJ
    Biochemistry; 1998 May; 37(21):7749-56. PubMed ID: 9601035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.