BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 10535998)

  • 1. Molecular cloning and functional analysis of SUT-1, a sulfate transporter from human high endothelial venules.
    Girard JP; Baekkevold ES; Feliu J; Brandtzaeg P; Amalric F
    Proc Natl Acad Sci U S A; 1999 Oct; 96(22):12772-7. PubMed ID: 10535998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular and functional characterization of SLC26A11, a sodium-independent sulfate transporter from high endothelial venules.
    Vincourt JB; Jullien D; Amalric F; Girard JP
    FASEB J; 2003 May; 17(8):890-2. PubMed ID: 12626430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular cloning of SLC26A7, a novel member of the SLC26 sulfate/anion transporter family, from high endothelial venules and kidney.
    Vincourt JB; Jullien D; Kossida S; Amalric F; Girard JP
    Genomics; 2002 Feb; 79(2):249-56. PubMed ID: 11829495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterogeneity of endothelial cells: the specialized phenotype of human high endothelial venules characterized by suppression subtractive hybridization.
    Girard JP; Baekkevold ES; Yamanaka T; Haraldsen G; Brandtzaeg P; Amalric F
    Am J Pathol; 1999 Dec; 155(6):2043-55. PubMed ID: 10595934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular cloning and functional expression of a sodium-dicarboxylate cotransporter from human kidney.
    Pajor AM
    Am J Physiol; 1996 Apr; 270(4 Pt 2):F642-8. PubMed ID: 8967342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence and functional characterization of a renal sodium/dicarboxylate cotransporter.
    Pajor AM
    J Biol Chem; 1995 Mar; 270(11):5779-85. PubMed ID: 7890707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression cloning and characterization of a renal electrogenic Na+/HCO3- cotransporter.
    Romero MF; Hediger MA; Boulpaep EL; Boron WF
    Nature; 1997 May; 387(6631):409-13. PubMed ID: 9163427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression cloning of NaDC-2, an intestinal Na(+)- or Li(+)-dependent dicarboxylate transporter.
    Bai L; Pajor AM
    Am J Physiol; 1997 Aug; 273(2 Pt 1):G267-74. PubMed ID: 9277403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The human renal sodium sulfate cotransporter (SLC13A1; hNaSi-1) cDNA and gene: organization, chromosomal localization, and functional characterization.
    Lee A; Beck L; Markovich D
    Genomics; 2000 Dec; 70(3):354-63. PubMed ID: 11161786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The SLC13 gene family of sodium sulphate/carboxylate cotransporters.
    Markovich D; Murer H
    Pflugers Arch; 2004 Feb; 447(5):594-602. PubMed ID: 12915942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional characteristics of NaS2, a placenta-specific Na+-coupled transporter for sulfate and oxyanions of the micronutrients selenium and chromium.
    Miyauchi S; Srinivas SR; Fei YJ; Gopal E; Umapathy NS; Wang H; Conway SJ; Ganapathy V; Prasad PD
    Placenta; 2006; 27(6-7):550-9. PubMed ID: 16129486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The substrate recognition domain in the Na+/dicarboxylate and Na+/sulfate cotransporters is located in the carboxy-terminal portion of the protein.
    Pajor AM; Sun N; Bai L; Markovich D; Sule P
    Biochim Biophys Acta; 1998 Mar; 1370(1):98-106. PubMed ID: 9518567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular and functional analysis of SDCT2, a novel rat sodium-dependent dicarboxylate transporter.
    Chen X; Tsukaguchi H; Chen XZ; Berger UV; Hediger MA
    J Clin Invest; 1999 Apr; 103(8):1159-68. PubMed ID: 10207168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional characterization and genomic organization of the human Na(+)-sulfate cotransporter hNaS2 gene (SLC13A4).
    Markovich D; Regeer RR; Kunzelmann K; Dawson PA
    Biochem Biophys Res Commun; 2005 Jan; 326(4):729-34. PubMed ID: 15607730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of rat ileal Na(+)-sulphate cotransport in Xenopus laevis oocytes: functional characterization.
    Perego C; Markovich D; Norbis F; Verri T; Sorribas V; Murer H
    Pflugers Arch; 1994 Jun; 427(3-4):252-6. PubMed ID: 8072843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional analysis of diastrophic dysplasia sulfate transporter. Its involvement in growth regulation of chondrocytes mediated by sulfated proteoglycans.
    Satoh H; Susaki M; Shukunami C; Iyama K; Negoro T; Hiraki Y
    J Biol Chem; 1998 May; 273(20):12307-15. PubMed ID: 9575183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular cloning, functional characterization, tissue distribution, and chromosomal localization of a human, small intestinal sodium-phosphate (Na+-Pi) transporter (SLC34A2).
    Xu H; Bai L; Collins JF; Ghishan FK
    Genomics; 1999 Dec; 62(2):281-4. PubMed ID: 10610722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure, function, and genomic organization of human Na(+)-dependent high-affinity dicarboxylate transporter.
    Wang H; Fei YJ; Kekuda R; Yang-Feng TL; Devoe LD; Leibach FH; Prasad PD; Ganapathy V
    Am J Physiol Cell Physiol; 2000 May; 278(5):C1019-30. PubMed ID: 10794676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression cloning of rat renal Na+/SO4(2-) cotransport.
    Markovich D; Forgo J; Stange G; Biber J; Murer H
    Proc Natl Acad Sci U S A; 1993 Sep; 90(17):8073-7. PubMed ID: 7690140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional expression cloning of the canalicular sulfate transport system of rat hepatocytes.
    Bissig M; Hagenbuch B; Stieger B; Koller T; Meier PJ
    J Biol Chem; 1994 Jan; 269(4):3017-21. PubMed ID: 8300633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.