These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 10536150)

  • 1. Markerless gene replacement in Escherichia coli stimulated by a double-strand break in the chromosome.
    Pósfai G; Kolisnychenko V; Bereczki Z; Blattner FR
    Nucleic Acids Res; 1999 Nov; 27(22):4409-15. PubMed ID: 10536150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An electroporation-free method based on Red recombineering for markerless deletion and genomic replacement in the Escherichia coli DH1 genome.
    Wei Y; Deng P; Mohsin A; Yang Y; Zhou H; Guo M; Fang H
    PLoS One; 2017; 12(10):e0186891. PubMed ID: 29065183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid and efficient construction of markerless deletions in the Escherichia coli genome.
    Yu BJ; Kang KH; Lee JH; Sung BH; Kim MS; Kim SC
    Nucleic Acids Res; 2008 Aug; 36(14):e84. PubMed ID: 18567910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Establishment of a markerless mutation delivery system in Bacillus subtilis stimulated by a double-strand break in the chromosome.
    Shi T; Wang G; Wang Z; Fu J; Chen T; Zhao X
    PLoS One; 2013; 8(11):e81370. PubMed ID: 24282588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Markerless DNA deletion based on Red recombination and in vivo I-Sec I endonuclease cleavage in Escherichia coli chromosome].
    Zhu M; Yu J; Zhou C; Fang H
    Sheng Wu Gong Cheng Xue Bao; 2016 Jan; 32(1):114-26. PubMed ID: 27363204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RecN protein and transcription factor DksA combine to promote faithful recombinational repair of DNA double-strand breaks.
    Meddows TR; Savory AP; Grove JI; Moore T; Lloyd RG
    Mol Microbiol; 2005 Jul; 57(1):97-110. PubMed ID: 15948952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering large fragment insertions into the chromosome of Escherichia coli.
    Rong R; Slupska MM; Chiang JH; Miller JH
    Gene; 2004 Jul; 336(1):73-80. PubMed ID: 15225877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of the meganuclease I-SceI of Saccharomyces cerevisiae to select for gene deletions in actinomycetes.
    Fernández-Martínez LT; Bibb MJ
    Sci Rep; 2014 Nov; 4():7100. PubMed ID: 25403842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct selection for the exchange of alleles between a plasmid and the Escherichia coli chromosome.
    Merryweather A; Bernander R; Nordström K
    Mol Gen Genet; 1987 Dec; 210(3):381-4. PubMed ID: 3323841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The hybrid recombinational repair pathway operates in a χ activity deficient recC1004 mutant of Escherichia coli.
    Vlašić I; Simatović A; Brčić-Kostić K
    Biochimie; 2012 Sep; 94(9):1918-25. PubMed ID: 22617484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The dif resolvase locus of the Escherichia coli chromosome can be replaced by a 33-bp sequence, but function depends on location.
    Tecklenburg M; Naumer A; Nagappan O; Kuempel P
    Proc Natl Acad Sci U S A; 1995 Feb; 92(5):1352-6. PubMed ID: 7877981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic system for reversible integration of DNA constructs and lacZ gene fusions into the Escherichia coli chromosome.
    Platt R; Drescher C; Park SK; Phillips GJ
    Plasmid; 2000 Jan; 43(1):12-23. PubMed ID: 10610816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Promotion of markerless deletion of the actinorhodin biosynthetic gene cluster in Streptomyces coelicolor.
    Lu Z; Xie P; Qin Z
    Acta Biochim Biophys Sin (Shanghai); 2010 Oct; 42(10):717-21. PubMed ID: 20810535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel approach for Escherichia coli genome editing combining in vivo cloning and targeted long-length chromosomal insertion.
    Hook CD; Samsonov VV; Ublinskaya AA; Kuvaeva TM; Andreeva EV; Gorbacheva LY; Stoynova NV
    J Microbiol Methods; 2016 Nov; 130():83-91. PubMed ID: 27567891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination.
    Puchta H; Dujon B; Hohn B
    Proc Natl Acad Sci U S A; 1996 May; 93(10):5055-60. PubMed ID: 8643528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repair of a specific double-strand break generated within a mammalian chromosome by yeast endonuclease I-SceI.
    Lukacsovich T; Yang D; Waldman AS
    Nucleic Acids Res; 1994 Dec; 22(25):5649-57. PubMed ID: 7838718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-specific dissection of E. coli chromosome by lambda terminase.
    Kotani H; Kawamura A; Takahashi A; Nakatsuji M; Hiraoka N; Nakajima K; Takanami M
    Nucleic Acids Res; 1992 Jul; 20(13):3357-60. PubMed ID: 1630906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RecG helicase promotes DNA double-strand break repair.
    Meddows TR; Savory AP; Lloyd RG
    Mol Microbiol; 2004 Apr; 52(1):119-32. PubMed ID: 15049815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directed homologous recombination for genome engineering in Escherichia coli.
    Csörgö B; Pósfai G
    Acta Biol Hung; 2007; 58 Suppl():1-10. PubMed ID: 18297790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene doctoring: a method for recombineering in laboratory and pathogenic Escherichia coli strains.
    Lee DJ; Bingle LE; Heurlier K; Pallen MJ; Penn CW; Busby SJ; Hobman JL
    BMC Microbiol; 2009 Dec; 9():252. PubMed ID: 20003185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.