BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 10536197)

  • 1. Transmitter quantal size in Torpedo electrocytes is determined by frequency of release.
    Kriebel ME; Fox GQ; Keller B
    Brain Res; 1999 Oct; 845(2):185-91. PubMed ID: 10536197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic responses of presynaptic terminal membrane pools following KCl and sucrose stimulation.
    Fox GQ; Kriebel ME
    Brain Res; 1997 Apr; 755(1):47-62. PubMed ID: 9163540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmitter release: prepackaging and random mechanism or dynamic and deterministic process.
    Kriebel ME; Vautrin J; Holsapple J
    Brain Res Brain Res Rev; 1990; 15(2):167-78. PubMed ID: 1980833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Space and time characteristics of transmitter release at the nerve-electroplaque junction of Torpedo.
    Girod R; Corrèges P; Jacquet J; Dunant Y
    J Physiol; 1993 Nov; 471():129-57. PubMed ID: 8120801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detached, purified nerve terminals from skate electric organ for biochemical and physiological studies.
    Kriebel ME; Dowdall MJ; Pappas GD; Downie DL
    Biol Bull; 1996 Feb; 190(1):88-97. PubMed ID: 8852632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of calcium on the dynamic process of transmitter release which generates either skew- or bell-MEPPS.
    Marcus DS; Kriebel ME; Hanna RB
    Brain Res; 1992 Oct; 593(2):185-96. PubMed ID: 1450927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Further evidence for the dynamic formation of transmitter quanta at the neuromuscular junction.
    Vautrin J; Kriebel ME; Holsapple J
    J Neurosci Res; 1992 Jun; 32(2):245-54. PubMed ID: 1357188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantal transmitter release mediated by strontium at the mouse motor nerve terminal.
    Bain AI; Quastel DM
    J Physiol; 1992 May; 450():63-87. PubMed ID: 1359125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The quantal nature of transmission and spontaneous potentials at the Torpedo electromotor junction.
    Erdélyi L
    Acta Physiol Hung; 1985; 65(1):81-93. PubMed ID: 2986414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequency and amplitude gradients of spontaneous release along the length of the frog neuromuscular junction.
    Robitaille R; Tremblay JP
    Synapse; 1989; 3(4):291-307. PubMed ID: 2568018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of Ca(2+)-dependent and Ca(2+)-independent miniature endplate potentials by phorbol ester and adenosine in frog.
    Searl TJ; Silinsky EM
    Br J Pharmacol; 2005 Aug; 145(7):954-62. PubMed ID: 15880138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Ca2+-induced Ca2+ release mechanism involved in asynchronous exocytosis at frog motor nerve terminals.
    Narita K; Akita T; Osanai M; Shirasaki T; Kijima H; Kuba K
    J Gen Physiol; 1998 Nov; 112(5):593-609. PubMed ID: 9806968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transmitter release at mouse motor nerve terminals mediated by temporary accumulation of intracellular barium.
    Quastel DM; Saint DA
    J Physiol; 1988 Dec; 406():55-73. PubMed ID: 2908184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Depolarization reverses age-related decrease of spontaneous transmitter release.
    Alshuaib WB; Fahim MA
    J Appl Physiol (1985); 1991 May; 70(5):2066-71. PubMed ID: 1677936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantal release of acetylcholine evoked by focal depolarization at the Torpedo nerve-electroplaque junction.
    Dunant Y; Muller D
    J Physiol; 1986 Oct; 379():461-78. PubMed ID: 2435895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in miniature endplate potential frequency during repetitive nerve stimulation in the presence of Ca2+, Ba2+, and Sr2+ at the frog neuromuscular junction.
    Zengel JE; Magleby KL
    J Gen Physiol; 1981 May; 77(5):503-29. PubMed ID: 6262429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of single quantal efficacy at the snake neuromuscular junction.
    Wilkinson RS; Lunin SD; Stevermer JJ
    J Physiol; 1992 Mar; 448():413-36. PubMed ID: 1350638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A statistical model supports the subunit hypothesis of quantal relsease.
    Matteson DR; Kreibel ME; Llados F
    Neurosci Lett; 1979 Dec; 15(2-3):147-52. PubMed ID: 43495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the venom of Glycera convoluta on the spontaneous quantal release of transmitter.
    Manaranche R; Thieffry M; Israel M
    J Cell Biol; 1980 May; 85(2):446-58. PubMed ID: 6103003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in MEPP frequency during depression of evoked release at the frog neuromuscular junction.
    Zengel JE; Sosa MA
    J Physiol; 1994 Jun; 477(Pt 2):267-77. PubMed ID: 7932218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.