These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 10536366)
1. Donor variation in the growth properties and osteogenic potential of human marrow stromal cells. Phinney DG; Kopen G; Righter W; Webster S; Tremain N; Prockop DJ J Cell Biochem; 1999 Dec; 75(3):424-36. PubMed ID: 10536366 [TBL] [Abstract][Full Text] [Related]
2. Effect of donor characteristics, technique of harvesting and in vitro processing on culturing of human marrow stroma cells for tissue engineered growth of bone. Bertram H; Mayer H; Schliephake H Clin Oral Implants Res; 2005 Oct; 16(5):524-31. PubMed ID: 16164457 [TBL] [Abstract][Full Text] [Related]
3. Real-time quantitative RT-PCR analysis of human bone marrow stromal cells during osteogenic differentiation in vitro. Frank O; Heim M; Jakob M; Barbero A; Schäfer D; Bendik I; Dick W; Heberer M; Martin I J Cell Biochem; 2002; 85(4):737-46. PubMed ID: 11968014 [TBL] [Abstract][Full Text] [Related]
4. Donor variation and loss of multipotency during in vitro expansion of human mesenchymal stem cells for bone tissue engineering. Siddappa R; Licht R; van Blitterswijk C; de Boer J J Orthop Res; 2007 Aug; 25(8):1029-41. PubMed ID: 17469183 [TBL] [Abstract][Full Text] [Related]
5. The influence of proepicardial cells on the osteogenic potential of marrow stromal cells in a three-dimensional tubular scaffold. Valarmathi MT; Yost MJ; Goodwin RL; Potts JD Biomaterials; 2008 May; 29(14):2203-16. PubMed ID: 18289664 [TBL] [Abstract][Full Text] [Related]
6. In vitro and in vivo evaluation of differentially demineralized cancellous bone scaffolds combined with human bone marrow stromal cells for tissue engineering. Mauney JR; Jaquiéry C; Volloch V; Heberer M; Martin I; Kaplan DL Biomaterials; 2005 Jun; 26(16):3173-85. PubMed ID: 15603812 [TBL] [Abstract][Full Text] [Related]
7. Cellular expression of bone-related proteins during in vitro osteogenesis in rat bone marrow stromal cell cultures. Malaval L; Modrowski D; Gupta AK; Aubin JE J Cell Physiol; 1994 Mar; 158(3):555-72. PubMed ID: 8126078 [TBL] [Abstract][Full Text] [Related]
8. Maintenance of osteoblastic and adipocytic differentiation potential with age and osteoporosis in human marrow stromal cell cultures. Justesen J; Stenderup K; Eriksen EF; Kassem M Calcif Tissue Int; 2002 Jul; 71(1):36-44. PubMed ID: 12200657 [TBL] [Abstract][Full Text] [Related]
9. Donor-to-donor variability in the expansion potential of human bone marrow cells is reduced by accessory cells but not by soluble growth factors. Koller MR; Manchel I; Brott DA; Palsson Bø Exp Hematol; 1996 Nov; 24(13):1484-93. PubMed ID: 8950231 [TBL] [Abstract][Full Text] [Related]
10. Platelet-rich concentrate supports human mesenchymal stem cell proliferation, bone morphogenetic protein-2 messenger RNA expression, alkaline phosphatase activity, and bone formation in vitro: a mode of action to enhance bone repair. Parsons P; Butcher A; Hesselden K; Ellis K; Maughan J; Milner R; Scott M; Alley C; Watson JT; Horner A J Orthop Trauma; 2008 Oct; 22(9):595-604. PubMed ID: 18827588 [TBL] [Abstract][Full Text] [Related]
11. Multipotential mesenchymal stem cells from femoral bone marrow near the site of osteonecrosis. Lee HS; Huang GT; Chiang H; Chiou LL; Chen MH; Hsieh CH; Jiang CC Stem Cells; 2003; 21(2):190-9. PubMed ID: 12634415 [TBL] [Abstract][Full Text] [Related]
12. Gene expression of runx2, Osterix, c-fos, DLX-3, DLX-5, and MSX-2 in dental follicle cells during osteogenic differentiation in vitro. Morsczeck C Calcif Tissue Int; 2006 Feb; 78(2):98-102. PubMed ID: 16467978 [TBL] [Abstract][Full Text] [Related]
13. Osteogenic differentiation of adipose-derived stromal cells treated with GDF-5 cultured on a novel three-dimensional sintered microsphere matrix. Shen FH; Zeng Q; Lv Q; Choi L; Balian G; Li X; Laurencin CT Spine J; 2006; 6(6):615-23. PubMed ID: 17088192 [TBL] [Abstract][Full Text] [Related]
14. Matrix-mediated retention of osteogenic differentiation potential by human adult bone marrow stromal cells during ex vivo expansion. Mauney JR; Kaplan DL; Volloch V Biomaterials; 2004 Jul; 25(16):3233-43. PubMed ID: 14980418 [TBL] [Abstract][Full Text] [Related]
15. Human bone marrow stromal cells: In vitro expansion and differentiation for bone engineering. Ciapetti G; Ambrosio L; Marletta G; Baldini N; Giunti A Biomaterials; 2006 Dec; 27(36):6150-60. PubMed ID: 16965811 [TBL] [Abstract][Full Text] [Related]
16. Proliferation and osteogenic differentiation of human bone marrow stromal cells on alginate-gelatine-hydroxyapatite scaffolds with anisotropic pore structure. Bernhardt A; Despang F; Lode A; Demmler A; Hanke T; Gelinsky M J Tissue Eng Regen Med; 2009 Jan; 3(1):54-62. PubMed ID: 19012272 [TBL] [Abstract][Full Text] [Related]
17. Human mesenchymal stem cells support megakaryocyte and pro-platelet formation from CD34(+) hematopoietic progenitor cells. Cheng L; Qasba P; Vanguri P; Thiede MA J Cell Physiol; 2000 Jul; 184(1):58-69. PubMed ID: 10825234 [TBL] [Abstract][Full Text] [Related]
18. Induction of rapid osteoblast differentiation in rat bone marrow stromal cell cultures by dexamethasone and BMP-2. Rickard DJ; Sullivan TA; Shenker BJ; Leboy PS; Kazhdan I Dev Biol; 1994 Jan; 161(1):218-28. PubMed ID: 8293874 [TBL] [Abstract][Full Text] [Related]
19. Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite/bacterial cellulose nanocomposite scaffolds. Fang B; Wan YZ; Tang TT; Gao C; Dai KR Tissue Eng Part A; 2009 May; 15(5):1091-8. PubMed ID: 19196148 [TBL] [Abstract][Full Text] [Related]
20. Characterization of human bone marrow stromal cells with respect to osteoblastic differentiation. Majors AK; Boehm CA; Nitto H; Midura RJ; Muschler GF J Orthop Res; 1997 Jul; 15(4):546-57. PubMed ID: 9379264 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]