These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 10536823)

  • 1. Reversed-phase liquid chromatographic separation of complex samples by optimizing temperature and gradient time I. Peak capacity limitations.
    Dolan JW; Snyder LR; Djordjevic NM; Hill DW; Waeghe TJ
    J Chromatogr A; 1999 Oct; 857(1-2):1-20. PubMed ID: 10536823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversed-phase liquid chromatographic separation of complex samples by optimizing temperature and gradient time III. Improving the accuracy of computer simulation.
    Dolan JW; Snyder LR; Wolcott RG; Haber P; Baczek T; Kaliszan R; Sander LC
    J Chromatogr A; 1999 Oct; 857(1-2):41-68. PubMed ID: 10536825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversed-phase liquid chromatographic separation of complex samples by optimizing temperature and gradient time II. Two-run assay procedures.
    Dolan JW; Snyder LR; Djordjevic NM; Hill DW; Waeghe TJ
    J Chromatogr A; 1999 Oct; 857(1-2):21-39. PubMed ID: 10536824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer simulation for the convenient optimization of isocratic reversed-phase liquid chromatographic separations by varying temperature and mobile phase strength.
    Wolcott RG; Dolan JW; Snyder LR
    J Chromatogr A; 2000 Feb; 869(1-2):3-25. PubMed ID: 10720221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Fast optimization of stepwise gradient conditions for ternary mobile phase in reversed-phase high performance liquid chromatography].
    Shan YC; Zhang YK; Zhao RH
    Se Pu; 2002 Jul; 20(4):289-94. PubMed ID: 12541907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selectivity differences for C18 and C8 reversed-phase columns as a function of temperature and gradient steepness. I. Optimizing selectivity and resolution.
    Dolan JW; Snyder LR; Blanc T; Van Heukelem L
    J Chromatogr A; 2000 Nov; 897(1-2):37-50. PubMed ID: 11128220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peak capacity optimization of peptide separations in reversed-phase gradient elution chromatography: fixed column format.
    Wang X; Stoll DR; Schellinger AP; Carr PW
    Anal Chem; 2006 May; 78(10):3406-16. PubMed ID: 16689544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peak capacity in gradient reversed-phase liquid chromatography of biopolymers. Theoretical and practical implications for the separation of oligonucleotides.
    Gilar M; Neue UD
    J Chromatogr A; 2007 Oct; 1169(1-2):139-50. PubMed ID: 17897658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. "Orthogonal" separations for reversed-phase liquid chromatography.
    Pellett J; Lukulay P; Mao Y; Bowen W; Reed R; Ma M; Munger RC; Dolan JW; Wrisley L; Medwid K; Toltl NP; Chan CC; Skibic M; Biswas K; Wells KA; Snyder LR
    J Chromatogr A; 2006 Jan; 1101(1-2):122-35. PubMed ID: 16236292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphical Method for Choosing Optimized Conditions Given a Pump Pressure and a Particle Diameter in Liquid Chromatography.
    Groskreutz SR; Weber SG
    Anal Chem; 2016 Dec; 88(23):11742-11749. PubMed ID: 27790917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selection of high-performance liquid chromatographic methods in pharmaceutical analysis. I. Optimization for selectivity in reversed-phase chromatography.
    Gazdag M; Szepesi G; Szeleczki E
    J Chromatogr; 1988 Nov; 454():83-94. PubMed ID: 3235607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of enhanced-fluidity liquid hydrophilic interaction chromatography for the separation of nucleosides and nucleotides.
    Philibert GS; Olesik SV
    J Chromatogr A; 2011 Nov; 1218(45):8222-30. PubMed ID: 21974894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of elution profiles in liquid chromatography - II: Investigation of injection volume overload under gradient elution conditions applied to second dimension separations in two-dimensional liquid chromatography.
    Stoll DR; Sajulga RW; Voigt BN; Larson EJ; Jeong LN; Rutan SC
    J Chromatogr A; 2017 Nov; 1523():162-172. PubMed ID: 28747254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multimode gradient elution in reversed-phase liquid chromatography: application to retention prediction and separation optimization of a set of amino acids in gradient runs involving simultaneous variations of mobile-phase composition, flow rate, and temperature.
    Pappa-Louisi A; Nikitas P; Papachristos K; Balkatzopoulou P
    Anal Chem; 2009 Feb; 81(3):1217-23. PubMed ID: 19123773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Closed form approximations to predict retention times and peak widths in gradient elution under conditions of sample volume overload and sample solvent mismatch.
    Rutan SC; Jeong LN; Carr PW; Stoll DR; Weber SG
    J Chromatogr A; 2021 Sep; 1653():462376. PubMed ID: 34293516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Programmed elution in comprehensive two-dimensional liquid chromatography.
    Jandera P
    J Chromatogr A; 2012 Sep; 1255():112-29. PubMed ID: 22443894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Possibilities of retention prediction in fast gradient liquid chromatography. Part 1: Comparison of separation on packed fully porous, nonporous and monolithic columns.
    Vyňuchalová K; Jandera P
    J Chromatogr A; 2013 Feb; 1278():37-45. PubMed ID: 23336942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimisation technique for stepwise gradient elution in reversed-phase liquid chromatography.
    Nikitas P; Pappa-Louisi A; Papachristos K
    J Chromatogr A; 2004 Apr; 1033(2):283-9. PubMed ID: 15088749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Method for characterization of selectivity in reversed-phase liquid chromatography. III. Retention behaviour in gradient-elution chromatography: application to the chromatography of pesticide compounds.
    Jandera P; Spacek M
    J Chromatogr; 1986 Sep; 366():107-26. PubMed ID: 3782316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slow injector-to-column sample transport to maximize resolution in liquid chromatography: Theory versus practice.
    Gritti F; Tanaka N
    J Chromatogr A; 2019 Aug; 1600():219-237. PubMed ID: 31060782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.