These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 10536824)

  • 1. Reversed-phase liquid chromatographic separation of complex samples by optimizing temperature and gradient time II. Two-run assay procedures.
    Dolan JW; Snyder LR; Djordjevic NM; Hill DW; Waeghe TJ
    J Chromatogr A; 1999 Oct; 857(1-2):21-39. PubMed ID: 10536824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversed-phase liquid chromatographic separation of complex samples by optimizing temperature and gradient time III. Improving the accuracy of computer simulation.
    Dolan JW; Snyder LR; Wolcott RG; Haber P; Baczek T; Kaliszan R; Sander LC
    J Chromatogr A; 1999 Oct; 857(1-2):41-68. PubMed ID: 10536825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversed-phase liquid chromatographic separation of complex samples by optimizing temperature and gradient time I. Peak capacity limitations.
    Dolan JW; Snyder LR; Djordjevic NM; Hill DW; Waeghe TJ
    J Chromatogr A; 1999 Oct; 857(1-2):1-20. PubMed ID: 10536823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer simulation for the convenient optimization of isocratic reversed-phase liquid chromatographic separations by varying temperature and mobile phase strength.
    Wolcott RG; Dolan JW; Snyder LR
    J Chromatogr A; 2000 Feb; 869(1-2):3-25. PubMed ID: 10720221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selectivity differences for C18 and C8 reversed-phase columns as a function of temperature and gradient steepness. I. Optimizing selectivity and resolution.
    Dolan JW; Snyder LR; Blanc T; Van Heukelem L
    J Chromatogr A; 2000 Nov; 897(1-2):37-50. PubMed ID: 11128220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implementations of two-dimensional liquid chromatography.
    Guiochon G; Marchetti N; Mriziq K; Shalliker RA
    J Chromatogr A; 2008 May; 1189(1-2):109-68. PubMed ID: 18336826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "Orthogonal" separations for reversed-phase liquid chromatography.
    Pellett J; Lukulay P; Mao Y; Bowen W; Reed R; Ma M; Munger RC; Dolan JW; Wrisley L; Medwid K; Toltl NP; Chan CC; Skibic M; Biswas K; Wells KA; Snyder LR
    J Chromatogr A; 2006 Jan; 1101(1-2):122-35. PubMed ID: 16236292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature as a variable in reversed-phase high-performance liquid chromatographic separations of peptide and protein samples. I. Optimizing the separation of a growth hormone tryptic digest.
    Hancock WS; Chloupek RC; Kirkland JJ; Snyder LR
    J Chromatogr A; 1994 Nov; 686(1):31-43. PubMed ID: 7849982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversed-phase high-performance liquid chromatographic prefractionation of immunodepleted human serum proteins to enhance mass spectrometry identification of lower-abundant proteins.
    Martosella J; Zolotarjova N; Liu H; Nicol G; Boyes BE
    J Proteome Res; 2005; 4(5):1522-37. PubMed ID: 16212403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stationary-phase optimized selectivity liquid chromatography: development of a linear gradient prediction algorithm.
    De Beer M; Lynen F; Chen K; Ferguson P; Hanna-Brown M; Sandra P
    Anal Chem; 2010 Mar; 82(5):1733-43. PubMed ID: 20146446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of column temperature in reversed-phase liquid chromatography.
    Wolcott RG; Dolan JW; Snyder LR; Bakalyar SR; Arnold MA; Nichols JA
    J Chromatogr A; 2000 Feb; 869(1-2):211-30. PubMed ID: 10720238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing the peak capacity per unit time in one-dimensional and off-line two-dimensional liquid chromatography for the separation of complex peptide samples.
    Eeltink S; Dolman S; Swart R; Ursem M; Schoenmakers PJ
    J Chromatogr A; 2009 Oct; 1216(44):7368-74. PubMed ID: 19285679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ganoderma species discrimination by dual-mode chromatographic fingerprinting: a study on stationary phase effects in hydrophilic interaction chromatography and reduction of sample misclassification rate by additional use of reversed-phase chromatography.
    Chen Y; Bicker W; Wu J; Xie MY; Lindner W
    J Chromatogr A; 2010 Feb; 1217(8):1255-65. PubMed ID: 20031144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature as a variable in reversed-phase high-performance liquid chromatographic separations of peptide and protein samples. II. Selectivity effects observed in the separation of several peptide and protein mixtures.
    Chloupek RC; Hancock WS; Marchylo BA; Kirkland JJ; Boyes BE; Snyder LR
    J Chromatogr A; 1994 Nov; 686(1):45-59. PubMed ID: 7849983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of elution profiles in liquid chromatography - II: Investigation of injection volume overload under gradient elution conditions applied to second dimension separations in two-dimensional liquid chromatography.
    Stoll DR; Sajulga RW; Voigt BN; Larson EJ; Jeong LN; Rutan SC
    J Chromatogr A; 2017 Nov; 1523():162-172. PubMed ID: 28747254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative metabolite profiling utilizing parallel column analysis for simultaneous reversed-phase and hydrophilic interaction liquid chromatography separations combined with tandem mass spectrometry.
    Klavins K; Drexler H; Hann S; Koellensperger G
    Anal Chem; 2014 May; 86(9):4145-50. PubMed ID: 24678888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selectivity differences for C18 and C8 reversed-phase columns as a function of temperature and gradient steepness. II. Minimizing column reproducibility problems.
    Dolan JW; Snyder LR; Blanc T
    J Chromatogr A; 2000 Nov; 897(1-2):51-63. PubMed ID: 11128226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predictive kinetic optimisation of hydrophilic interaction chromatography × reversed phase liquid chromatography separations: Experimental verification and application to phenolic analysis.
    Muller M; Tredoux AGJ; de Villiers A
    J Chromatogr A; 2018 Oct; 1571():107-120. PubMed ID: 30100525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A methodology employing retention modeling for achieving control space in liquid chromatography method development using quality by design approach.
    Jayaraman K; Rajendran AK; Kumar GS; Bhutani H
    J Chromatogr A; 2021 Jan; 1635():461658. PubMed ID: 33333351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Method transfer for fast liquid chromatography in pharmaceutical analysis: application to short columns packed with small particle. Part I: isocratic separation.
    Guillarme D; Nguyen DT; Rudaz S; Veuthey JL
    Eur J Pharm Biopharm; 2007 Jun; 66(3):475-82. PubMed ID: 17267188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.