These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 10537220)

  • 1. Physiological characterization of Streptococcus bovis mutants that can resist 2-deoxyglucose-induced lysis.
    Bond DR; Tsai BM; Russell JB
    Microbiology (Reading); 1999 Oct; 145 ( Pt 10)():2977-85. PubMed ID: 10537220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ability of 2-deoxyglucose to promote the lysis of Streptococcus bovis JB1 via a mechanism involving cell wall stability.
    Russell JB; Wells JE
    Curr Microbiol; 1997 Nov; 35(5):299-304. PubMed ID: 9462960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inducer expulsion is not a determinant of diauxic growth in Streptococcus bovis.
    Kearns DB; Cook GM; Russell JB
    Curr Microbiol; 1996 Apr; 32(4):221-4. PubMed ID: 8867462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of the lactose phosphotransferase system of Streptococcus bovis by glucose: independence of inducer exclusion and expulsion mechanisms.
    Cook GM; Kearns DB; Russell JB; Reizer J; Saier MH
    Microbiology (Reading); 1995 Sep; 141 ( Pt 9)():2261-9. PubMed ID: 7496538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of growth conditions on the Streptococcus bovis phosphoenolpyruvate glucose phosphotransferase system.
    Moore GA; Martin SA
    J Anim Sci; 1991 Dec; 69(12):4967-73. PubMed ID: 1808190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autolysis of Lactococcus lactis is increased upon D-alanine depletion of peptidoglycan and lipoteichoic acids.
    Steen A; Palumbo E; Deghorain M; Cocconcelli PS; Delcour J; Kuipers OP; Kok J; Buist G; Hols P
    J Bacteriol; 2005 Jan; 187(1):114-24. PubMed ID: 15601695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphoenolpyruvate-dependent phosphorylation of hexoses by ruminal bacteria: evidence for the phosphotransferase transport system.
    Martin SA; Russell JB
    Appl Environ Microbiol; 1986 Dec; 52(6):1348-52. PubMed ID: 3789722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alternative strategies of 2-deoxyglucose resistance and low affinity glucose transport in the ruminal bacteria, Streptococcus bovis and Selenomonas ruminantium.
    Cook GM; Russell JB
    FEMS Microbiol Lett; 1994 Oct; 123(1-2):207-12. PubMed ID: 7988891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular phosphorylation of glucose analogs via the phosphoenolpyruvate: mannose-phosphotransferase system in Streptococcus lactis.
    Thompson J; Chassy BM
    J Bacteriol; 1985 Apr; 162(1):224-34. PubMed ID: 3920204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Streptococcus salivarius urease expression: involvement of the phosphoenolpyruvate:sugar phosphotransferase system.
    Chen YY; Hall TH; Burne RA
    FEMS Microbiol Lett; 1998 Aug; 165(1):117-22. PubMed ID: 9711847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphoenolpyruvate-dependent glucose phosphotransferase activity in Streptococcus mitis ATCC 903.
    Roberts KR; Linder L
    Scand J Dent Res; 1980 Aug; 88(4):316-22. PubMed ID: 6934615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Sugar phosphorylation activities in acetogenic bacteria].
    Jiang W; Patterson JA
    Wei Sheng Wu Xue Bao; 1999 Dec; 39(6):539-45. PubMed ID: 12555560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of 2-deoxyglucose phosphate accumulation in Lactococcus lactis vesicles by metabolite-activated, ATP-dependent phosphorylation of serine-46 in HPr of the phosphotransferase system.
    Ye JJ; Reizer J; Saier MH
    Microbiology (Reading); 1994 Dec; 140 ( Pt 12)():3421-9. PubMed ID: 7881559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucose transport by a mutant of Streptococcus mutans unable to accumulate sugars via the phosphoenolpyruvate phosphotransferase system.
    Cvitkovitch DG; Boyd DA; Thevenot T; Hamilton IR
    J Bacteriol; 1995 May; 177(9):2251-8. PubMed ID: 7730250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Phosphoenolpyruvate:hexose phosphotransferase systems in Lactobacillus species].
    Nagasaki H; Ito K; Matsuzaki S; Tanaka S
    Nihon Saikingaku Zasshi; 1992 Jul; 47(4):617-24. PubMed ID: 1433910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of autolysis of staphylococci by the basic peptide antibiotics Pep 5 and nisin and their influence on the activity of autolytic enzymes.
    Bierbaum G; Sahl HG
    Arch Microbiol; 1985 Apr; 141(3):249-54. PubMed ID: 4004448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Staphylococcus aureus ypfP mutant with strongly reduced lipoteichoic acid (LTA) content: LTA governs bacterial surface properties and autolysin activity.
    Fedtke I; Mader D; Kohler T; Moll H; Nicholson G; Biswas R; Henseler K; Götz F; Zähringer U; Peschel A
    Mol Microbiol; 2007 Aug; 65(4):1078-91. PubMed ID: 17640274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenotypic consequences resulting from a methionine-to-valine substitution at position 48 in the HPr protein of Streptococcus salivarius.
    Plamondon P; Brochu D; Thomas S; Fradette J; Gauthier L; Vaillancourt K; Buckley N; Frenette M; Vadeboncoeur C
    J Bacteriol; 1999 Nov; 181(22):6914-21. PubMed ID: 10559156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adherence of S. bovis to adult buccal epithelial cells.
    von Hunolstein C; Ricci ML; Scenati R; Orefici G
    Microbiologica; 1987 Oct; 10(4):385-92. PubMed ID: 3695986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of mucopolysaccharides on penicillin-induced lysis of Staphylococcus aureus.
    Kiriyama T; Miyake Y; Sugai M; Kobayashi K; Yoshiga K; Takada K; Suginaka H
    J Med Microbiol; 1987 Dec; 24(4):325-31. PubMed ID: 2447280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.