These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
330 related articles for article (PubMed ID: 10537333)
1. Mechanisms of inactivation of p14ARF, p15INK4b, and p16INK4a genes in human esophageal squamous cell carcinoma. Xing EP; Nie Y; Song Y; Yang GY; Cai YC; Wang LD; Yang CS Clin Cancer Res; 1999 Oct; 5(10):2704-13. PubMed ID: 10537333 [TBL] [Abstract][Full Text] [Related]
2. Aberrant methylation of p16INK4a and deletion of p15INK4b are frequent events in human esophageal cancer in Linxian, China. Xing EP; Nie Y; Wang LD; Yang GY; Yang CS Carcinogenesis; 1999 Jan; 20(1):77-84. PubMed ID: 9934853 [TBL] [Abstract][Full Text] [Related]
4. The prognostic significance of p16INK4a/p14ARF and p15INK4b deletions in adult acute lymphoblastic leukemia. Faderl S; Kantarjian HM; Manshouri T; Chan CY; Pierce S; Hays KJ; Cortes J; Thomas D; Estrov Z; Albitar M Clin Cancer Res; 1999 Jul; 5(7):1855-61. PubMed ID: 10430092 [TBL] [Abstract][Full Text] [Related]
5. Methylation status of p14ARF, p15INK4b, and p16INK4a genes in human hepatocellular carcinoma. Fukai K; Yokosuka O; Imazeki F; Tada M; Mikata R; Miyazaki M; Ochiai T; Saisho H Liver Int; 2005 Dec; 25(6):1209-16. PubMed ID: 16343074 [TBL] [Abstract][Full Text] [Related]
6. Promoter hypermethylation and quantitative expression analysis of CDKN2A (p14ARF and p16INK4a) gene in esophageal squamous cell carcinoma. Ito S; Ohga T; Saeki H; Watanabe M; Kakeji Y; Morita M; Yamada T; Maehara Y Anticancer Res; 2007; 27(5A):3345-53. PubMed ID: 17970080 [TBL] [Abstract][Full Text] [Related]
7. Alterations of p14ARF and p16INK4a genes in salivary gland carcinomas. Nishimine M; Nakamura M; Kishi M; Okamoto M; Shimada K; Ishida E; Kirita T; Konishi N Oncol Rep; 2003; 10(3):555-60. PubMed ID: 12684623 [TBL] [Abstract][Full Text] [Related]
8. Loss of the p16INK4a and p15INK4b genes, as well as neighboring 9p21 markers, in sporadic melanoma. Flores JF; Walker GJ; Glendening JM; Haluska FG; Castresana JS; Rubio MP; Pastorfide GC; Boyer LA; Kao WH; Bulyk ML; Barnhill RL; Hayward NK; Housman DE; Fountain JW Cancer Res; 1996 Nov; 56(21):5023-32. PubMed ID: 8895759 [TBL] [Abstract][Full Text] [Related]
9. [Relationship between alterations of p16INK4a and p14ARF genes of CDKN2A locus and gastric carcinogenesis]. Tang SH; Yang DH; Luo HS; Yu JP; Shu JC Zhonghua Liu Xing Bing Xue Za Zhi; 2004 Jun; 25(6):517-21. PubMed ID: 15231134 [TBL] [Abstract][Full Text] [Related]
10. Genetic and epigenetic alterations of the cyclin-dependent kinase inhibitors p15INK4b and p16INK4a in human thyroid carcinoma cell lines and primary thyroid carcinomas. Elisei R; Shiohara M; Koeffler HP; Fagin JA Cancer; 1998 Nov; 83(10):2185-93. PubMed ID: 9827724 [TBL] [Abstract][Full Text] [Related]
11. 5' cytosine-phospho-guanine island methylation is responsible for p14ARF inactivation and inversely correlates with p53 overexpression in resected non-small cell lung cancer. Hsu HS; Wang YC; Tseng RC; Chang JW; Chen JT; Shih CM; Chen CY; Wang YC Clin Cancer Res; 2004 Jul; 10(14):4734-41. PubMed ID: 15269146 [TBL] [Abstract][Full Text] [Related]
12. Inactivation of the cyclin-dependent kinase inhibitor p15INK4b by deletion and de novo methylation with independence of p16INK4a alterations in murine primary T-cell lymphomas. Malumbres M; Pérez de Castro I; Santos J; Meléndez B; Mangues R; Serrano M; Pellicer A; Fernández-Piqueras J Oncogene; 1997 Mar; 14(11):1361-70. PubMed ID: 9178896 [TBL] [Abstract][Full Text] [Related]
13. Concomitant expression of p16INK4a and p14ARF in primary breast cancer and analysis of inactivation mechanisms. Silva J; Silva JM; Domínguez G; García JM; Cantos B; Rodríguez R; Larrondo FJ; Provencio M; España P; Bonilla F J Pathol; 2003 Mar; 199(3):289-97. PubMed ID: 12579530 [TBL] [Abstract][Full Text] [Related]
14. Hypermethylation-associated inactivation indicates a tumor suppressor role for p15INK4B. Herman JG; Jen J; Merlo A; Baylin SB Cancer Res; 1996 Feb; 56(4):722-7. PubMed ID: 8631003 [TBL] [Abstract][Full Text] [Related]
15. Tumor suppressor genes in the 9p21 gene cluster are selective targets of inactivation in neuroendocrine gastroenteropancreatic tumors. Lubomierski N; Kersting M; Bert T; Muench K; Wulbrand U; Schuermann M; Bartsch D; Simon B Cancer Res; 2001 Aug; 61(15):5905-10. PubMed ID: 11479232 [TBL] [Abstract][Full Text] [Related]
16. Genetic alterations of p16INK4a and p14ARF genes in human bladder cancer. Chang LL; Yeh WT; Yang SY; Wu WJ; Huang CH J Urol; 2003 Aug; 170(2 Pt 1):595-600. PubMed ID: 12853838 [TBL] [Abstract][Full Text] [Related]
17. Fine-mapping loss of gene architecture at the CDKN2B (p15INK4b), CDKN2A (p14ARF, p16INK4a), and MTAP genes in head and neck squamous cell carcinoma. Worsham MJ; Chen KM; Tiwari N; Pals G; Schouten JP; Sethi S; Benninger MS Arch Otolaryngol Head Neck Surg; 2006 Apr; 132(4):409-15. PubMed ID: 16618910 [TBL] [Abstract][Full Text] [Related]
18. High incidence of allelic loss on chromosome 5 and inactivation of p15INK4B and p16INK4A tumor suppressor genes in oxystress-induced renal cell carcinoma of rats. Tanaka T; Iwasa Y; Kondo S; Hiai H; Toyokuni S Oncogene; 1999 Jun; 18(25):3793-7. PubMed ID: 10391689 [TBL] [Abstract][Full Text] [Related]
19. Methylation of the 5' CpG island of the p16/CDKN2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing. Gonzalez-Zulueta M; Bender CM; Yang AS; Nguyen T; Beart RW; Van Tornout JM; Jones PA Cancer Res; 1995 Oct; 55(20):4531-5. PubMed ID: 7553622 [TBL] [Abstract][Full Text] [Related]
20. Homozygous codeletion and differential decreased expression of p15INK4b, p16INK4a-alpha and p16INK4a-beta in mouse lung tumor cells. Herzog CR; Soloff EV; McDoniels AL; Tyson FL; Malkinson AM; Haugen-Strano A; Wiseman RW; Anderson MW; You M Oncogene; 1996 Nov; 13(9):1885-91. PubMed ID: 8934534 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]