These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 10539855)

  • 1. Chlamydia pneumoniae and atherosclerosis: links to the disease process.
    Byrne GI; Kalayoglu MV
    Am Heart J; 1999 Nov; 138(5 Pt 2):S488-90. PubMed ID: 10539855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chlamydial virulence determinants in atherogenesis: the role of chlamydial lipopolysaccharide and heat shock protein 60 in macrophage-lipoprotein interactions.
    Kalayoglu MV; Indrawati ; Morrison RP; Morrison SG; Yuan Y; Byrne GI
    J Infect Dis; 2000 Jun; 181 Suppl 3():S483-9. PubMed ID: 10839744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of macrophage foam cell formation by Chlamydia pneumoniae.
    Kalayoglu MV; Byrne GI
    J Infect Dis; 1998 Mar; 177(3):725-9. PubMed ID: 9498454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of low-density lipoprotein uptake by murine macrophages exposed to Chlamydia pneumoniae.
    Kalayoglu MV; Miranpuri GS; Golenbock DT; Byrne GI
    Microbes Infect; 1999 May; 1(6):409-18. PubMed ID: 10602673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Chlamydia pneumoniae component that induces macrophage foam cell formation is chlamydial lipopolysaccharide.
    Kalayoglu MV; Byrne GI
    Infect Immun; 1998 Nov; 66(11):5067-72. PubMed ID: 9784505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular oxidation of low-density lipoprotein by Chlamydia pneumoniae.
    Kalayoglu MV; Hoerneman B; LaVerda D; Morrison SG; Morrison RP; Byrne GI
    J Infect Dis; 1999 Sep; 180(3):780-90. PubMed ID: 10438367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chlamydia pneumoniae-induced foam cell formation requires MyD88-dependent and -independent signaling and is reciprocally modulated by liver X receptor activation.
    Chen S; Sorrentino R; Shimada K; Bulut Y; Doherty TM; Crother TR; Arditi M
    J Immunol; 2008 Nov; 181(10):7186-93. PubMed ID: 18981140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chlamydia pneumoniae induces macrophage-derived foam cell formation via PPAR alpha and PPAR gamma-dependent pathways.
    Mei CL; He P; Cheng B; Liu W; Wang YF; Wan JJ
    Cell Biol Int; 2009 Mar; 33(3):301-8. PubMed ID: 19114110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peptide 19 of Porphyromonas gingivalis Heat Shock Protein Is a Potent Inducer of Low-Density Lipoprotein Oxidation.
    Joo JY; Cha GS; Chung J; Lee JY; Kim SJ; Choi J
    J Periodontol; 2017 Feb; 88(2):e58-e64. PubMed ID: 27712463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chlamydia pneumoniae--induced macrophage foam cell formation is mediated by Toll-like receptor 2.
    Cao F; Castrillo A; Tontonoz P; Re F; Byrne GI
    Infect Immun; 2007 Feb; 75(2):753-9. PubMed ID: 17145941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Foam cell formation inhibits growth of Chlamydia pneumoniae but does not attenuate Chlamydia pneumoniae-induced secretion of proinflammatory cytokines.
    Blessing E; Kuo CC; Lin TM; Campbell LA; Bea F; Chesebro B; Rosenfeld ME
    Circulation; 2002 Apr; 105(16):1976-82. PubMed ID: 11997286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene expression profiles of U937 human macrophages exposed to Chlamydophila pneumoniae and/or low density lipoprotein in five study models using differential display and real-time RT-PCR.
    Lim WC; Chow VT
    Biochimie; 2006; 88(3-4):367-77. PubMed ID: 16466844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endothelial Chlamydia pneumoniae infection promotes oxidation of LDL.
    Dittrich R; Dragonas C; Mueller A; Maltaris T; Rupp J; Beckmann MW; Maass M
    Biochem Biophys Res Commun; 2004 Jun; 319(2):501-5. PubMed ID: 15178434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chlamydia pneumoniae induces nitric oxide synthase and lipoxygenase-dependent production of reactive oxygen species in platelets. Effects on oxidation of low density lipoproteins.
    Kälvegren H; Bylin H; Leanderson P; Richter A; Grenegård M; Bengtsson T
    Thromb Haemost; 2005 Aug; 94(2):327-35. PubMed ID: 16113822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Chlamydial and human heat shock protein 60 homologues in acute coronary syndromes. (Auto-)immune reactions as a link between infection and atherosclerosis].
    Andrié R; Braun P; Welsch U; Straube E; Höpp HW; Erdmann E; Lüderitz B; Bauriedel G
    Z Kardiol; 2003 Jun; 92(6):455-65. PubMed ID: 12819994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chlamydial heat shock proteins and disease pathology: new paradigms for old problems?
    LaVerda D; Kalayoglu MV; Byrne GI
    Infect Dis Obstet Gynecol; 1999; 7(1-2):64-71. PubMed ID: 10231012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chlamydia pneumoniae and atherosclerosis.
    Ouchi K
    Jpn J Infect Dis; 1999 Dec; 52(6):223-7. PubMed ID: 10738358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Koala biovar of Chlamydia pneumoniae infects human and koala monocytes and induces increased uptake of lipids in vitro.
    Coles KA; Timms P; Smith DW
    Infect Immun; 2001 Dec; 69(12):7894-7. PubMed ID: 11705973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resveratrol in Chlamydia pneumoniae-induced foam cell formation and interleukin-17A synthesis.
    Di Pietro M; De Santis F; Schiavoni G; Filardo S; Sessa R
    J Biol Regul Homeost Agents; 2013; 27(2):509-18. PubMed ID: 23830400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Role of Chlamydia pneumoniae in the etiology of atherosclerosis].
    Likhoded VG; Martynova VR
    Zh Mikrobiol Epidemiol Immunobiol; 2000; (4 Suppl):117-21. PubMed ID: 12712533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.