These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 10540740)
1. Involvement of cytochrome a in iron oxidation of a moderately thermophilic iron-oxidizing bacterium, strain TI-1. Takai M; Kamimura K; Sugio T Biosci Biotechnol Biochem; 1999 Sep; 63(9):1541-7. PubMed ID: 10540740 [TBL] [Abstract][Full Text] [Related]
2. A new iron oxidase from a moderately thermophilic iron oxidizing bacterium strain TI-1. Takai M; Kamimura K; Sugio T Eur J Biochem; 2001 Mar; 268(6):1653-8. PubMed ID: 11248684 [TBL] [Abstract][Full Text] [Related]
3. Isolation and some properties of a mesophilic and mixotrophic iron-oxidizing bacterium, OKM-9. Inoue T; Kamimura K; Suogi T Biosci Biotechnol Biochem; 2000 Oct; 64(10):2059-67. PubMed ID: 11129576 [TBL] [Abstract][Full Text] [Related]
4. Volatilization of mercury by an iron oxidation enzyme system in a highly mercury-resistant Acidithiobacillus ferrooxidans strain MON-1. Sugio T; Fujii M; Takeuchi F; Negishi A; Maeda T; Kamimura K Biosci Biotechnol Biochem; 2003 Jul; 67(7):1537-44. PubMed ID: 12913298 [TBL] [Abstract][Full Text] [Related]
5. Purification and some properties of ubiquinol oxidase from obligately chemolithotrophic iron-oxidizing bacterium, Thiobacillus ferrooxidans NASF-1. Kamimura K; Fujii S; Sugio T Biosci Biotechnol Biochem; 2001 Jan; 65(1):63-71. PubMed ID: 11272847 [TBL] [Abstract][Full Text] [Related]
6. Ferrous iron oxidation in moderately thermophilic acidophile Sulfobacillus sibiricus N1(T). Dinarieva TY; Zhuravleva AE; Pavlenko OA; Tsaplina IA; Netrusov AI Can J Microbiol; 2010 Oct; 56(10):803-8. PubMed ID: 20962902 [TBL] [Abstract][Full Text] [Related]
7. Ferrous-iron-dependent uptake of L-glutamate by a mesophilic, mixotrophic iron-oxidizing bacterium strain OKM-9. Inoue T; Kamimura K; Sugio T Biosci Biotechnol Biochem; 2002 Oct; 66(10):2030-5. PubMed ID: 12450111 [TBL] [Abstract][Full Text] [Related]
8. Resonance Raman spectroscopic identification of a histidine ligand of b595 and the nature of the ligation of chlorin d in the fully reduced Escherichia coli cytochrome bd oxidase. Sun J; Kahlow MA; Kaysser TM; Osborne JP; Hill JJ; Rohlfs RJ; Hille R; Gennis RB; Loehr TM Biochemistry; 1996 Feb; 35(7):2403-12. PubMed ID: 8652583 [TBL] [Abstract][Full Text] [Related]
9. Existence of aa3-type ubiquinol oxidase as a terminal oxidase in sulfite oxidation of Acidithiobacillus thiooxidans. Sugio T; Hisazumi T; Kanao T; Kamimura K; Takeuchi F; Negishi A Biosci Biotechnol Biochem; 2006 Jul; 70(7):1584-91. PubMed ID: 16861791 [TBL] [Abstract][Full Text] [Related]
10. Involvement of sulfide:quinone oxidoreductase in sulfur oxidation of an acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans NASF-1. Wakai S; Kikumoto M; Kanao T; Kamimura K Biosci Biotechnol Biochem; 2004 Dec; 68(12):2519-28. PubMed ID: 15618623 [TBL] [Abstract][Full Text] [Related]
11. Hydrogen-oxidizing electron transport components in the hyperthermophilic archaebacterium Pyrodictium brockii. Pihl TD; Black LK; Schulman BA; Maier RJ J Bacteriol; 1992 Jan; 174(1):137-43. PubMed ID: 1309514 [TBL] [Abstract][Full Text] [Related]
12. Cytochrome a1 of acetobacter aceti is a cytochrome ba functioning as ubiquinol oxidase. Matsushita K; Shinagawa E; Adachi O; Ameyama M Proc Natl Acad Sci U S A; 1990 Dec; 87(24):9863-7. PubMed ID: 2263637 [TBL] [Abstract][Full Text] [Related]
13. Noncompetitive inhibition by L-cysteine and activation by L-glutamate of the iron-oxidizing activity of a mixotrophic iron-oxidizing bacterium strain OKM-9. Sugio T; Inoue T; Kitano Y; Takeuchi F; Kamimura K J Biosci Bioeng; 2004; 98(2):85-91. PubMed ID: 16233671 [TBL] [Abstract][Full Text] [Related]
14. Electron transport components involved in hydrogen oxidation in free-living Rhizobium japonicum. O'Brian MR; Maier RJ J Bacteriol; 1982 Oct; 152(1):422-30. PubMed ID: 6288665 [TBL] [Abstract][Full Text] [Related]
15. Effects of electron transport inhibitors and uncouplers on the oxidation of ferrous iron and compounds interacting with ferric iron in Acidithiobacillus ferrooxidans. Chen Y; Suzuki I Can J Microbiol; 2005 Aug; 51(8):695-703. PubMed ID: 16234867 [TBL] [Abstract][Full Text] [Related]
16. Formation of the N-N bond from nitric oxide by a membrane-bound cytochrome bc complex of nitrate-respiring (denitrifying) Pseudomonas stutzeri. Heiss B; Frunzke K; Zumft WG J Bacteriol; 1989 Jun; 171(6):3288-97. PubMed ID: 2542222 [TBL] [Abstract][Full Text] [Related]
17. The identification of cytochromes involved in the transfer of electrons to the periplasmic NO3- reductase of Rhodobacter capsulatus and resolution of a soluble NO3(-)-reductase--cytochrome-c552 redox complex. Richardson DJ; McEwan AG; Page MD; Jackson JB; Ferguson SJ Eur J Biochem; 1990 Nov; 194(1):263-70. PubMed ID: 2174775 [TBL] [Abstract][Full Text] [Related]
18. Mechanism of growth inhibition by tungsten in Acidithiobacillus ferrooxidans. Sugio T; Kuwano H; Negishi A; Maeda T; Takeuchi F; Kamimura K Biosci Biotechnol Biochem; 2001 Mar; 65(3):555-62. PubMed ID: 11330668 [TBL] [Abstract][Full Text] [Related]
19. Sulfite oxidation by iron-grown cells of Thiobacillus ferrooxidans at pH 3 possibly involves free radicals, iron, and cytochrome oxidase. Harahuc L; Suzuki I Can J Microbiol; 2001 May; 47(5):424-30. PubMed ID: 11400733 [TBL] [Abstract][Full Text] [Related]
20. Transient accumulation of heme O (cytochrome o) in the cytoplasmic membrane of semi-anaerobic Anacystis nidulans. Evidence for oxygenase-catalyzed heme O/A transformation. Peschek GA; Alge D; Fromwald S; Mayer B J Biol Chem; 1995 Nov; 270(46):27937-41. PubMed ID: 7499269 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]