These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 10540908)

  • 41. TnphoA and TnphoA' elements for making and switching fusions for study of transcription, translation, and cell surface localization.
    Wilmes-Riesenberg MR; Wanner BL
    J Bacteriol; 1992 Jul; 174(14):4558-75. PubMed ID: 1378054
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Conjugal transfer and mobilization capacity of the completely sequenced naphthalene plasmid pNAH20 from multiplasmid strain Pseudomonas fluorescens PC20.
    Heinaru E; Vedler E; Jutkina J; Aava M; Heinaru A
    FEMS Microbiol Ecol; 2009 Dec; 70(3):563-74. PubMed ID: 19744238
    [TBL] [Abstract][Full Text] [Related]  

  • 43. New Tn10 derivatives for transposon mutagenesis and for construction of lacZ operon fusions by transposition.
    Way JC; Davis MA; Morisato D; Roberts DE; Kleckner N
    Gene; 1984 Dec; 32(3):369-79. PubMed ID: 6099322
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Genetic analysis of the histidine utilization (hut) genes in Pseudomonas fluorescens SBW25.
    Zhang XX; Rainey PB
    Genetics; 2007 Aug; 176(4):2165-76. PubMed ID: 17717196
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Activation of the lac genes of Tn951 by insertion sequences from Pseudomonas cepacia.
    Wood MS; Lory C; Lessie TG
    J Bacteriol; 1990 Apr; 172(4):1719-24. PubMed ID: 2156800
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A method for constructing single-copy lac fusions in Salmonella typhimurium and its application to the hemA-prfA operon.
    Elliott T
    J Bacteriol; 1992 Jan; 174(1):245-53. PubMed ID: 1309519
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A chromosomal locus required for copper resistance, competitive fitness, and cytochrome c biogenesis in Pseudomonas fluorescens.
    Yang CH; Azad HR; Cooksey DA
    Proc Natl Acad Sci U S A; 1996 Jul; 93(14):7315-20. PubMed ID: 8692990
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Role of hha and ler in transcriptional regulation of the esp operon of enterohemorrhagic Escherichia coli O157:H7.
    Sharma VK; Zuerner RL
    J Bacteriol; 2004 Nov; 186(21):7290-301. PubMed ID: 15489441
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of temperature and starvation upon survival strategies of Pseudomonas fluorescens CHA0: comparison with Escherichia coli.
    Arana I; Muela A; Orruño M; Seco C; Garaizabal I; Barcina I
    FEMS Microbiol Ecol; 2010 Dec; 74(3):500-9. PubMed ID: 20955194
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of growth temperature on several exported enzyme activities in the psychrotrophic bacterium Pseudomonas fluorescens.
    Gügi B; Orange N; Hellio F; Burini JF; Guillou C; Leriche F; Guespin-Michel JF
    J Bacteriol; 1991 Jun; 173(12):3814-20. PubMed ID: 1646789
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Identification of new genes regulated by the marRAB operon in Escherichia coli.
    Seoane AS; Levy SB
    J Bacteriol; 1995 Feb; 177(3):530-5. PubMed ID: 7836283
    [TBL] [Abstract][Full Text] [Related]  

  • 52. NKBOR, a mini-Tn10-based transposon for random insertion in the chromosome of Gram-negative bacteria and the rapid recovery of sequences flanking the insertion sites in Escherichia coli.
    Rossignol M; Basset A; Espéli O; Boccard F
    Res Microbiol; 2001 Jun; 152(5):481-5. PubMed ID: 11446516
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Broad-host-range plasmid vector for the in vitro construction of transcriptional/translational lac fusions.
    Nano FE; Shepherd WD; Watkins MM; Kuhl SA; Kaplan S
    Gene; 1985; 34(2-3):219-26. PubMed ID: 3924739
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A plasmid responsible for malonate assimilation in Pseudomonas fluorescens.
    Kim YS; Kim EJ
    Plasmid; 1994 Sep; 32(2):219-21. PubMed ID: 7846146
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The expression of virulence genes in Listeria monocytogenes is thermoregulated.
    Leimeister-Wächter M; Domann E; Chakraborty T
    J Bacteriol; 1992 Feb; 174(3):947-52. PubMed ID: 1732227
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Delivery system for creation of one-step in vivo lac gene fusions in Pseudomonas spp. involved in biological control.
    O'Sullivan DJ; O'Gara F
    Appl Environ Microbiol; 1988 Nov; 54(11):2877-80. PubMed ID: 2850764
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Detection and analysis of chromosomal arsenic resistance in Pseudomonas fluorescens strain MSP3.
    Prithivirajsingh S; Mishra SK; Mahadevan A
    Biochem Biophys Res Commun; 2001 Feb; 280(5):1393-401. PubMed ID: 11162686
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Construction and properties of Tn917-lac, a transposon derivative that mediates transcriptional gene fusions in Bacillus subtilis.
    Perkins JB; Youngman PJ
    Proc Natl Acad Sci U S A; 1986 Jan; 83(1):140-4. PubMed ID: 3001720
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chromosomal integration of transcriptional fusions.
    Silva-Rocha R; de Lorenzo V
    Methods Mol Biol; 2014; 1149():479-89. PubMed ID: 24818927
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ice nucleation activity of Pseudomonas fluorescens: mutagenesis, complementation analysis and identification of a gene product.
    Corotto LV; Wolber PK; Warren GJ
    EMBO J; 1986 Feb; 5(2):231-6. PubMed ID: 3011397
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.