These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 10541060)
1. The conditioned avoidance response test re-evaluated: is it a sensitive test for the detection of potentially atypical antipsychotics? Wadenberg ML; Hicks PB Neurosci Biobehav Rev; 1999; 23(6):851-62. PubMed ID: 10541060 [TBL] [Abstract][Full Text] [Related]
2. Antagonism at 5-HT(2A) receptors potentiates the effect of haloperidol in a conditioned avoidance response task in rats. Wadenberg MG; Browning JL; Young KA; Hicks PB Pharmacol Biochem Behav; 2001 Mar; 68(3):363-70. PubMed ID: 11325387 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of N-desmethylclozapine as a potential antipsychotic--preclinical studies. Natesan S; Reckless GE; Barlow KB; Nobrega JN; Kapur S Neuropsychopharmacology; 2007 Jul; 32(7):1540-9. PubMed ID: 17164815 [TBL] [Abstract][Full Text] [Related]
4. Enhanced efficacy of both typical and atypical antipsychotic drugs by adjunctive alpha2 adrenoceptor blockade: experimental evidence. Wadenberg ML; Wiker C; Svensson TH Int J Neuropsychopharmacol; 2007 Apr; 10(2):191-202. PubMed ID: 16707032 [TBL] [Abstract][Full Text] [Related]
5. Conditioned avoidance response in the development of new antipsychotics. Wadenberg ML Curr Pharm Des; 2010 Jan; 16(3):358-70. PubMed ID: 20109144 [TBL] [Abstract][Full Text] [Related]
6. Pharmacological profiles in rats of novel antipsychotics with combined dopamine D2/serotonin 5-HT1A activity: comparison with typical and atypical conventional antipsychotics. Bardin L; Auclair A; Kleven MS; Prinssen EP; Koek W; Newman-Tancredi A; Depoortère R Behav Pharmacol; 2007 Mar; 18(2):103-18. PubMed ID: 17351418 [TBL] [Abstract][Full Text] [Related]
7. Pyrrolo[1,3]benzothiazepine-based serotonin and dopamine receptor antagonists. Molecular modeling, further structure-activity relationship studies, and identification of novel atypical antipsychotic agents. Campiani G; Butini S; Fattorusso C; Catalanotti B; Gemma S; Nacci V; Morelli E; Cagnotto A; Mereghetti I; Mennini T; Carli M; Minetti P; Di Cesare MA; Mastroianni D; Scafetta N; Galletti B; Stasi MA; Castorina M; Pacifici L; Vertechy M; Di Serio S; Ghirardi O; Tinti O; Carminati P J Med Chem; 2004 Jan; 47(1):143-57. PubMed ID: 14695828 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of the effects of α2 adrenoceptor antagonism with the D2 receptor antagonist raclopride on conditioned avoidance responding in rats. Jacobson SM; Prus AJ Behav Pharmacol; 2010 Oct; 21(7):654-9. PubMed ID: 20729715 [TBL] [Abstract][Full Text] [Related]
9. Activity of aromatic substituted phenylpiperazines lacking affinity for dopamine binding sites in a preclinical test of antipsychotic efficacy. Martin GE; Elgin RJ; Mathiasen JR; Davis CB; Kesslick JM; Baldy WJ; Shank RP; DiStefano DL; Fedde CL; Scott MK J Med Chem; 1989 May; 32(5):1052-6. PubMed ID: 2565400 [TBL] [Abstract][Full Text] [Related]
10. Does antagonism at 5-HT2A receptors potentiate D₂ blockade-induced disruption of conditioned avoidance response? Gao J; Huang Y; Li M Exp Clin Psychopharmacol; 2019 Apr; 27(2):103-108. PubMed ID: 30556732 [TBL] [Abstract][Full Text] [Related]
11. Effects of typical and atypical antipsychotic drugs on two-way active avoidance. Relationship to DA receptor blocking profile. Ogren SO; Archer T Psychopharmacology (Berl); 1994 Apr; 114(3):383-91. PubMed ID: 7855196 [TBL] [Abstract][Full Text] [Related]
12. Enhancement of antipsychoticlike properties of raclopride in rats using the selective serotonin2A receptor antagonist MDL 100,907. Wadenberg ML; Hicks PB; Richter JT; Young KA Biol Psychiatry; 1998 Sep; 44(6):508-15. PubMed ID: 9777184 [TBL] [Abstract][Full Text] [Related]
13. Noradrenaline reuptake inhibition enhances the antipsychotic-like effect of raclopride and potentiates D2-blockage-induced dopamine release in the medial prefrontal cortex of the rat. Linnér L; Wiker C; Wadenberg ML; Schalling M; Svensson TH Neuropsychopharmacology; 2002 Nov; 27(5):691-8. PubMed ID: 12431844 [TBL] [Abstract][Full Text] [Related]
14. Long-term effects of JL 13, a potential atypical antipsychotic, on rat dopamine and serotonin receptor subtypes. Moran-Gates T; Massari C; Graulich A; Liégeois JF; Tarazi FI J Neurosci Res; 2006 Aug; 84(3):675-82. PubMed ID: 16810690 [TBL] [Abstract][Full Text] [Related]
16. Comparative effect of lurasidone and blonanserin on cortical glutamate, dopamine, and acetylcholine efflux: role of relative serotonin (5-HT)2A and DA D2 antagonism and 5-HT1A partial agonism. Huang M; Panos JJ; Kwon S; Oyamada Y; Rajagopal L; Meltzer HY J Neurochem; 2014 Mar; 128(6):938-49. PubMed ID: 24164459 [TBL] [Abstract][Full Text] [Related]
18. In vivo binding to dopamine receptors: a correlate of potential antipsychotic activity. McQuade RD; Duffy RA; Coffin VL; Barnett A Eur J Pharmacol; 1992 Apr; 215(1):29-34. PubMed ID: 1355442 [TBL] [Abstract][Full Text] [Related]
19. Dissociation between in vivo occupancy and functional antagonism of dopamine D2 receptors: comparing aripiprazole to other antipsychotics in animal models. Natesan S; Reckless GE; Nobrega JN; Fletcher PJ; Kapur S Neuropsychopharmacology; 2006 Sep; 31(9):1854-63. PubMed ID: 16319908 [TBL] [Abstract][Full Text] [Related]
20. Combination of escitalopram and a 5-HT(₁A) receptor antagonist selectively decreases the extracellular levels of dopamine in the nucleus accumbens relative to striatum through 5-HT(₂C) receptor stimulation; suggestive of antipsychotic potential. Hovelsø N; Sager TN; Mørk A Pharmacol Biochem Behav; 2011 Jan; 97(3):479-85. PubMed ID: 20937301 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]