These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 10541070)

  • 1. Compression data on bovine bone confirms that a "stressed volume" principle explains the variability of fatigue strength results.
    Taylor D; O'Brien F; Prina-Mello A; Ryan C; O'Reilly P; Lee TC
    J Biomech; 1999 Nov; 32(11):1199-203. PubMed ID: 10541070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatigue of bone and bones: an analysis based on stressed volume.
    Taylor D
    J Orthop Res; 1998 Mar; 16(2):163-9. PubMed ID: 9621890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of compact bone failure under two different loading rates: experimental and modelling approaches.
    Pithioux M; Subit D; Chabrand P
    Med Eng Phys; 2004 Oct; 26(8):647-53. PubMed ID: 15471692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A phenomenological model for predicting fatigue life in bovine trabecular bone.
    Ganguly P; Moore TL; Gibson LJ
    J Biomech Eng; 2004 Jun; 126(3):330-9. PubMed ID: 15341169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term fatigue behavior of compact bone at low strain magnitude and rate.
    Schaffler MB; Radin EL; Burr DB
    Bone; 1990; 11(5):321-6. PubMed ID: 2252810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatigue of bovine trabecular bone.
    Moore TL; Gibson LJ
    J Biomech Eng; 2003 Dec; 125(6):761-8. PubMed ID: 14986399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volume effects on fatigue life of equine cortical bone.
    Bigley RF; Gibeling JC; Stover SM; Hazelwood SJ; Fyhrie DP; Martin RB
    J Biomech; 2007; 40(16):3548-54. PubMed ID: 17632110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Similarity in the fatigue behavior of trabecular bone across site and species.
    Haddock SM; Yeh OC; Mummaneni PV; Rosenberg WS; Keaveny TM
    J Biomech; 2004 Feb; 37(2):181-7. PubMed ID: 14706320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stressed volume around vascular canals explains compressive fatigue life variation of secondary osteonal bone but not plexiform bone.
    Loundagin LL; Edwards WB
    J Mech Behav Biomed Mater; 2020 Nov; 111():104002. PubMed ID: 32769071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of torsional loading on compressive fatigue behaviour of trabecular bone.
    Fatihhi SJ; Rabiatul AA; Harun MN; Kadir MR; Kamarul T; Syahrom A
    J Mech Behav Biomed Mater; 2016 Feb; 54():21-32. PubMed ID: 26410762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inelastic strain accumulation in cortical bone during rapid transient tensile loading.
    Fondrk MT; Bahniuk EH; Davy DT
    J Biomech Eng; 1999 Dec; 121(6):616-21. PubMed ID: 10633262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Volume effects on yield strength of equine cortical bone.
    Bigley RF; Gibeling JC; Stover SM; Hazelwood SJ; Fyhrie DP; Martin RB
    J Mech Behav Biomed Mater; 2008 Oct; 1(4):295-302. PubMed ID: 19627794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compressive mechanical properties of bovine cortical bone under varied loading rates.
    Yu B; Zhao GF; Lim JI; Lee YK
    Proc Inst Mech Eng H; 2011 Oct; 225(10):941-7. PubMed ID: 22204116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental verification of the roles of intrinsic matrix viscoelasticity and tension-compression nonlinearity in the biphasic response of cartilage.
    Huang CY; Soltz MA; Kopacz M; Mow VC; Ateshian GA
    J Biomech Eng; 2003 Feb; 125(1):84-93. PubMed ID: 12661200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Yield strain behavior of trabecular bone.
    Kopperdahl DL; Keaveny TM
    J Biomech; 1998 Jul; 31(7):601-8. PubMed ID: 9796682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model of flexural fatigue damage accumulation for cortical bone.
    Griffin LV; Gibeling JC; Martin RB; Gibson VA; Stover SM
    J Orthop Res; 1997 Jul; 15(4):607-14. PubMed ID: 9379272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lattice strains and load partitioning in bovine trabecular bone.
    Akhtar R; Daymond MR; Almer JD; Mummery PM
    Acta Biomater; 2011 Feb; 7(2):716-23. PubMed ID: 20951842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of fabric in the large strain compressive behavior of human trabecular bone.
    Charlebois M; Pretterklieber M; Zysset PK
    J Biomech Eng; 2010 Dec; 132(12):121006. PubMed ID: 21142320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strong similarities in the creep and damage behaviour of a synthetic bone model compared to human trabecular bone under compressive cyclic loading.
    Purcell P; Tiernan S; McEvoy F; Morris S
    J Mech Behav Biomed Mater; 2015 Aug; 48():51-59. PubMed ID: 25913608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microdamage assessment of bone-cement interfaces under monotonic and cyclic compression.
    Tozzi G; Zhang QH; Tong J
    J Biomech; 2014 Nov; 47(14):3466-74. PubMed ID: 25283468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.