These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 10541754)

  • 1. Contribution of proprioceptive information to preferred versus constrained space-time behavior in rhythmical movements.
    Bonnard M; Pailhous J
    Exp Brain Res; 1999 Oct; 128(4):568-72. PubMed ID: 10541754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is proprioception important for the timing of motor activities?
    LaRue J; Bard C; Fleury M; Teasdale N; Paillard J; Forget R; Lamarre Y
    Can J Physiol Pharmacol; 1995 Feb; 73(2):255-61. PubMed ID: 7621364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-moved target eye tracking in control and deafferented subjects: roles of arm motor command and proprioception in arm-eye coordination.
    Vercher JL; Gauthier GM; Guédon O; Blouin J; Cole J; Lamarre Y
    J Neurophysiol; 1996 Aug; 76(2):1133-44. PubMed ID: 8871226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Task-dependent asymmetries in the utilization of proprioceptive feedback for goal-directed movement.
    Goble DJ; Brown SH
    Exp Brain Res; 2007 Jul; 180(4):693-704. PubMed ID: 17297548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proprioceptive coordination of movement sequences: role of velocity and position information.
    Cordo P; Carlton L; Bevan L; Carlton M; Kerr GK
    J Neurophysiol; 1994 May; 71(5):1848-61. PubMed ID: 8064352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-induced versus reactive triggering of synchronous movements in a deafferented patient and control subjects.
    Stenneken P; Aschersleben G; Cole J; Prinz W
    Psychol Res; 2002 Feb; 66(1):40-9. PubMed ID: 11963277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proprioceptive population coding of two-dimensional limb movements in humans: I. Muscle spindle feedback during spatially oriented movements.
    Bergenheim M; Ribot-Ciscar E; Roll JP
    Exp Brain Res; 2000 Oct; 134(3):301-10. PubMed ID: 11045355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics of motor programs underlying arm movements in monkeys.
    Polit A; Bizzi E
    J Neurophysiol; 1979 Jan; 42(1 Pt 1):183-94. PubMed ID: 107279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of proprioception in the control of prehension movements: a kinematic study in a peripherally deafferented patient and in normal subjects.
    Gentilucci M; Toni I; Chieffi S; Pavesi G
    Exp Brain Res; 1994; 99(3):483-500. PubMed ID: 7957728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for stronger visuo-motor than visuo-proprioceptive conflict during mirror drawing performed by a deafferented subject and control subjects.
    Miall RC; Cole J
    Exp Brain Res; 2007 Jan; 176(3):432-9. PubMed ID: 16874511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. "Proprioceptive signature" of cursive writing in humans: a multi-population coding.
    Roll JP; Albert F; Ribot-Ciscar E; Bergenheim M
    Exp Brain Res; 2004 Aug; 157(3):359-68. PubMed ID: 15007582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How efficient are central mechanisms for the learning and retention of coincident timing actions?
    Fleury M; Bard C; Teasdale N; Michaud D; Lamarre Y
    Neuropsychologia; 1999 Jun; 37(6):723-30. PubMed ID: 10390034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arm-trunk coordination in the absence of proprioception.
    Tunik E; Poizner H; Levin MF; Adamovich SV; Messier J; Lamarre Y; Feldman AG
    Exp Brain Res; 2003 Dec; 153(3):343-55. PubMed ID: 14504854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of sensory information in the production of periodic finger-tapping sequences.
    Billon M; Semjen A; Cole J; Gauthier G
    Exp Brain Res; 1996 Jun; 110(1):117-30. PubMed ID: 8817263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The timing of control signals underlying fast point-to-point arm movements.
    Ghafouri M; Feldman AG
    Exp Brain Res; 2001 Apr; 137(3-4):411-23. PubMed ID: 11355386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Postural adjustments associated with different unloadings of the forearm: effects of proprioceptive and cutaneous afferent deprivation.
    Forget R; Lamarre Y
    Can J Physiol Pharmacol; 1995 Feb; 73(2):285-94. PubMed ID: 7621367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of proprioception for calibrating and updating the motor space.
    Bard C; Fleury M; Teasdale N; Paillard J; Nougier V
    Can J Physiol Pharmacol; 1995 Feb; 73(2):246-54. PubMed ID: 7621363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of short timing responses: a comparative study with a deafferented patient.
    Fleury M; Macar F; Bard C; Teasdale N; Paillard J; Lamarre Y; Forget R
    Neuropsychologia; 1994 Nov; 32(11):1435-40. PubMed ID: 7877750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of single-joint movements in deafferented patients: evidence for amplitude coding rather than position control.
    Nougier V; Bard C; Fleury M; Teasdale N; Cole J; Forget R; Paillard J; Lamarre Y
    Exp Brain Res; 1996 Jun; 109(3):473-82. PubMed ID: 8817278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cerebellum contributes to proprioception during motion.
    Weeks HM; Therrien AS; Bastian AJ
    J Neurophysiol; 2017 Aug; 118(2):693-702. PubMed ID: 28404825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.