These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 10542311)

  • 21. Spectroscopic studies on the formation and thermal stability of DNA triplexes with a benzoannulated delta-carboline-oligonucleotide conjugate.
    Eick A; Xiao Z; Langer P; Weisz K
    Bioorg Med Chem; 2008 Oct; 16(20):9106-12. PubMed ID: 18823783
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Triple helix formation at (AT)n adjacent to an oligopurine tract.
    Gowers DM; Fox KR
    Nucleic Acids Res; 1998 Aug; 26(16):3626-33. PubMed ID: 9685475
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metal Coordination to Ligand-Modified Peptide Nucleic Acid Triplexes.
    Jayarathna DR; Stout HD; Achim C
    Inorg Chem; 2018 Jun; 57(12):6865-6872. PubMed ID: 29845860
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nucleosome core particles inhibit DNA triple helix formation.
    Brown PM; Fox KR
    Biochem J; 1996 Oct; 319 ( Pt 2)(Pt 2):607-11. PubMed ID: 8912701
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigation of the formation and intracellular stability of purine.(purine/pyrimidine) triplexes.
    Debin A; Malvy C; Svinarchuk F
    Nucleic Acids Res; 1997 May; 25(10):1965-74. PubMed ID: 9115364
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 5-(1-propargylamino)-2'-deoxyuridine (UP): a novel thymidine analogue for generating DNA triplexes with increased stability.
    Bijapur J; Keppler MD; Bergqvist S; Brown T; Fox KR
    Nucleic Acids Res; 1999 Apr; 27(8):1802-9. PubMed ID: 10101187
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Secondary binding sites for heavily modified triplex forming oligonucleotides.
    Cardew AS; Brown T; Fox KR
    Nucleic Acids Res; 2012 Apr; 40(8):3753-62. PubMed ID: 22180535
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermodynamic characterization of the stability and the melting behavior of a DNA triplex: a spectroscopic and calorimetric study.
    Plum GE; Park YW; Singleton SF; Dervan PB; Breslauer KJ
    Proc Natl Acad Sci U S A; 1990 Dec; 87(23):9436-40. PubMed ID: 2251285
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DNA triple-helix formation on nucleosome core particles. Effect of length of the oligopurine tract.
    Brown PM; Fox KR
    Eur J Biochem; 1999 Apr; 261(1):301-10. PubMed ID: 10103063
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Solid-phase synthesis of positively charged deoxynucleic guanidine (DNG) tethering a Hoechst 33258 analogue: triplex and duplex stabilization by simultaneous minor groove binding.
    Reddy PM; Bruice TC
    J Am Chem Soc; 2004 Mar; 126(12):3736-47. PubMed ID: 15038726
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Circular dichroism and UV melting studies on formation of an intramolecular triplex containing parallel T*A:T and G*G:C triplets: netropsin complexation with the triplex.
    Gondeau C; Maurizot JC; Durand M
    Nucleic Acids Res; 1998 Nov; 26(21):4996-5003. PubMed ID: 9776765
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The stability of triplex DNA is affected by the stability of the underlying duplex.
    Rusling DA; Rachwal PA; Brown T; Fox KR
    Biophys Chem; 2009 Dec; 145(2-3):105-10. PubMed ID: 19819611
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Drug binding to higher ordered DNA structures: netropsin complexation with a nucleic acid triple helix.
    Park YW; Breslauer KJ
    Proc Natl Acad Sci U S A; 1992 Jul; 89(14):6653-7. PubMed ID: 1321445
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Specificity of antiparallel DNA triple helix formation.
    Chandler SP; Fox KR
    Biochemistry; 1996 Nov; 35(47):15038-48. PubMed ID: 8942670
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Presence of divalent cation is not mandatory for the formation of intramolecular purine-motif triplex containing human c-jun protooncogene target.
    Kaushik S; Kaushik M; Svinarchuk F; Malvy C; Fermandjian S; Kukreti S
    Biochemistry; 2011 May; 50(19):4132-42. PubMed ID: 21381700
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spectroscopic and calorimetric studies on the binding of an indoloquinoline drug to parallel and antiparallel DNA triplexes.
    Riechert-Krause F; Autenrieth K; Eick A; Weisz K
    Biochemistry; 2013 Jan; 52(1):41-52. PubMed ID: 23234257
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alternate-strand DNA triple-helix formation using short acridine-linked oligonucleotides.
    Washbrook E; Fox KR
    Biochem J; 1994 Jul; 301 ( Pt 2)(Pt 2):569-75. PubMed ID: 8043005
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Stabilization of DNA triple helix using conjugates of oligonucleotides and synthetic ligands].
    Siniakov AN; Riabinin VA; Grimm GN; Butorin AS
    Mol Biol (Mosk); 2001; 35(2):298-308. PubMed ID: 11357412
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combining nucleoside analogues to achieve recognition of oligopurine tracts by triplex-forming oligonucleotides at physiological pH.
    Rusling DA; Le Strat L; Powers VE; Broughton-Head VJ; Booth J; Lack O; Brown T; Fox KR
    FEBS Lett; 2005 Dec; 579(29):6616-20. PubMed ID: 16293248
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel series of DNA triple helix-binding ligands.
    Fox KR; Thurston DE; Jenkins TC; Varvaresou A; Tsotinis A; Siatra-Papastaikoudi T
    Biochem Biophys Res Commun; 1996 Jul; 224(3):717-20. PubMed ID: 8713112
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.