BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 10543442)

  • 1. The Janus face of the archaeal Cdc48/p97 homologue VAT: protein folding versus unfolding.
    Golbik R; Lupas AN; Koretke KK; Baumeister W; Peters J
    Biol Chem; 1999 Sep; 380(9):1049-62. PubMed ID: 10543442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The solution structure of VAT-N reveals a 'missing link' in the evolution of complex enzymes from a simple betaalphabetabeta element.
    Coles M; Diercks T; Liermann J; Gröger A; Rockel B; Baumeister W; Koretke KK; Lupas A; Peters J; Kessler H
    Curr Biol; 1999 Oct; 9(20):1158-68. PubMed ID: 10531028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutations in p97/VCP induce unfolding activity.
    Rothballer A; Tzvetkov N; Zwickl P
    FEBS Lett; 2007 Mar; 581(6):1197-201. PubMed ID: 17346713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron cryo-microscopy of VAT, the archaeal p97/CDC48 homologue from Thermoplasma acidophilum.
    Rockel B; Jakana J; Chiu W; Baumeister W
    J Mol Biol; 2002 Apr; 317(5):673-81. PubMed ID: 11955016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a new AAA+ protein from archaea.
    Summer H; Bruderer R; Weber-Ban E
    J Struct Biol; 2006 Oct; 156(1):120-9. PubMed ID: 16584891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of AMA, a new AAA protein from Archaeoglobus and methanogenic archaea.
    Djuranovic S; Rockel B; Lupas AN; Martin J
    J Struct Biol; 2006 Oct; 156(1):130-8. PubMed ID: 16730457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. VAT, the thermoplasma homolog of mammalian p97/VCP, is an N domain-regulated protein unfoldase.
    Gerega A; Rockel B; Peters J; Tamura T; Baumeister W; Zwickl P
    J Biol Chem; 2005 Dec; 280(52):42856-62. PubMed ID: 16236712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. p97/valosin-containing protein (VCP) is highly modulated by phosphorylation and acetylation.
    Mori-Konya C; Kato N; Maeda R; Yasuda K; Higashimae N; Noguchi M; Koike M; Kimura Y; Ohizumi H; Hori S; Kakizuka A
    Genes Cells; 2009 Apr; 14(4):483-97. PubMed ID: 19335618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleotide dependent motion and mechanism of action of p97/VCP.
    DeLaBarre B; Brunger AT
    J Mol Biol; 2005 Mar; 347(2):437-52. PubMed ID: 15740751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational changes of p97 during nucleotide hydrolysis determined by small-angle X-Ray scattering.
    Davies JM; Tsuruta H; May AP; Weis WI
    Structure; 2005 Feb; 13(2):183-95. PubMed ID: 15698563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The common phospholipid-binding activity of the N-terminal domains of PEX1 and VCP/p97.
    Shiozawa K; Goda N; Shimizu T; Mizuguchi K; Kondo N; Shimozawa N; Shirakawa M; Hiroaki H
    FEBS J; 2006 Nov; 273(21):4959-71. PubMed ID: 17018057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of ATPase and chaperone cycle of DnaK from Thermus thermophilus by the nucleotide exchange factor GrpE.
    Groemping Y; Klostermeier D; Herrmann C; Veit T; Seidel R; Reinstein J
    J Mol Biol; 2001 Feb; 305(5):1173-83. PubMed ID: 11162122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cdc48 is required for the stability of Cut1/separase in mitotic anaphase.
    Ikai N; Yanagida M
    J Struct Biol; 2006 Oct; 156(1):50-61. PubMed ID: 16904908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of E. coli Hsp100 ClpB nucleotide-binding domain 1 (NBD1) and mechanistic studies on ClpB ATPase activity.
    Li J; Sha B
    J Mol Biol; 2002 May; 318(4):1127-37. PubMed ID: 12054807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved structures of full-length p97, an AAA ATPase: implications for mechanisms of nucleotide-dependent conformational change.
    Davies JM; Brunger AT; Weis WI
    Structure; 2008 May; 16(5):715-26. PubMed ID: 18462676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rotary and unidirectional metal shadowing of VAT: localization of the substrate-binding domain.
    Rockel B; Guckenberger R; Gross H; Tittmann P; Baumeister W
    J Struct Biol; 2000 Nov; 132(2):162-8. PubMed ID: 11162738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PAN, the proteasome-activating nucleotidase from archaebacteria, is a protein-unfolding molecular chaperone.
    Benaroudj N; Goldberg AL
    Nat Cell Biol; 2000 Nov; 2(11):833-9. PubMed ID: 11056539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning, sequencing and expression of VAT, a CDC48/p97 ATPase homologue from the archaeon Thermoplasma acidophilum.
    Pamnani V; Tamura T; Lupas A; Peters J; Cejka Z; Ashraf W; Baumeister W
    FEBS Lett; 1997 Mar; 404(2-3):263-8. PubMed ID: 9119075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insertion of a chaperone domain converts FKBP12 into a powerful catalyst of protein folding.
    Knappe TA; Eckert B; Schaarschmidt P; Scholz C; Schmid FX
    J Mol Biol; 2007 May; 368(5):1458-68. PubMed ID: 17397867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origin and Functional Evolution of the Cdc48/p97/VCP AAA+ Protein Unfolding and Remodeling Machine.
    Barthelme D; Sauer RT
    J Mol Biol; 2016 May; 428(9 Pt B):1861-9. PubMed ID: 26608813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.