BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 10543503)

  • 21. Intermittent whole-body perfusion with "somatoplegia' versus blood perfusate to extend duration of circulatory arrest.
    Miura T; Laussen P; Lidov HG; DuPlessis A; Shin'oka T; Jonas RA
    Circulation; 1996 Nov; 94(9 Suppl):II56-62. PubMed ID: 8901720
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preoperative high dose methylprednisolone attenuates the cerebral response to deep hypothermic circulatory arrest.
    Langley SM; Chai PJ; Jaggers JJ; Ungerleider RM
    Eur J Cardiothorac Surg; 2000 Mar; 17(3):279-86. PubMed ID: 10758389
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of aortopulmonary collaterals on cerebral cooling and cerebral metabolic recovery after circulatory arrest.
    Kirshbom PM; Skaryak LA; DiBernardo LR; Kern FH; Greeley WJ; Gaynor JW; Ungerleider RM
    Circulation; 1995 Nov; 92(9 Suppl):II490-4. PubMed ID: 7586460
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Visual light spectroscopy reflects flow-related changes in brain oxygenation during regional low-flow perfusion and deep hypothermic circulatory arrest.
    Amir G; Ramamoorthy C; Riemer RK; Davis CR; Hanley FL; Reddy VM
    J Thorac Cardiovasc Surg; 2006 Dec; 132(6):1307-13. PubMed ID: 17140947
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of pH management during deep hypothermic bypass on cerebral microcirculation: alpha-stat versus pH-stat.
    Duebener LF; Hagino I; Sakamoto T; Mime LB; Stamm C; Zurakowski D; Schäfers HJ; Jonas RA
    Circulation; 2002 Sep; 106(12 Suppl 1):I103-8. PubMed ID: 12354717
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computer-controlled cardiopulmonary bypass increases jugular venous oxygen saturation during rewarming.
    Mutch WA; Lefevre GR; Thiessen DB; Girling LG; Warrian RK
    Ann Thorac Surg; 1998 Jan; 65(1):59-65. PubMed ID: 9456096
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microvascular fluid exchange during CPB with deep hypothermia circulatory arrest or low flow.
    Elvevoll B; Husby P; Kvalheim VL; Stangeland L; Mongstad A; Svendsen ØS
    Perfusion; 2017 Nov; 32(8):661-669. PubMed ID: 28622752
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of circulatory arrest and cardiopulmonary bypass on cerebral autoregulation in neonatal swine.
    Padawer-Curry JA; Volk LE; Mavroudis CD; Ko TS; Morano VC; Busch DR; Rosenthal TM; Melchior RW; Shade BC; Schiavo KL; Boorady TW; Schmidt AL; Andersen KN; Breimann JS; Jahnavi J; Mensah-Brown KG; Yodh AG; Mascio CE; Kilbaugh TJ; Licht DJ; White BR; Baker WB
    Pediatr Res; 2022 May; 91(6):1374-1382. PubMed ID: 33947997
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nitric oxide production affects cerebral perfusion and metabolism after deep hypothermic circulatory arrest.
    Tsui SS; Kirshbom PM; Davies MJ; Jacobs MT; Greeley WJ; Kern FH; Gaynor JW; Ungerleider RM
    Ann Thorac Surg; 1996 Jun; 61(6):1699-707. PubMed ID: 8651770
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The free radical spin trap alpha-phenyl-tert-butyl nitrone attenuates the cerebral response to deep hypothermic ischemia.
    Langley SM; Chai PJ; Jaggers JJ; Ungerleider RM
    J Thorac Cardiovasc Surg; 2000 Feb; 119(2):305-13. PubMed ID: 10649206
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hypoxemic reperfusion exacerbates the neurological injury sustained during neonatal deep hypothermic circulatory arrest: a model of cyanotic surgical repair.
    Hickey EJ; You X; Kaimaktchiev V; Ungerleider RM
    Eur J Cardiothorac Surg; 2007 May; 31(5):906-14. PubMed ID: 17331738
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Distribution and hierarchy of regional blood flow during hypothermic cardiopulmonary bypass.
    Slater JM; Orszulak TA; Cook DJ
    Ann Thorac Surg; 2001 Aug; 72(2):542-7. PubMed ID: 11515895
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carotid Doppler flow after cardiopulmonary bypass and mild hypothermia in neonatal piglets.
    Tirilomis T; Malliarou S; Bensch M; Coskun KO; Popov AF; Schoendube FA
    Artif Organs; 2013 Jan; 37(1):E40-3. PubMed ID: 23305586
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Myocardial contractility and relaxation after deep hypothermic circulatory arrest in a neonatal piglet model.
    Tirilomis T; Popov AF; Liakopoulos OJ; Schmitto JD; Bensch M; Steinke K; Coskun KO; Schoendube FA
    Artif Organs; 2012 Jan; 36(1):101-5. PubMed ID: 21790676
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of hollow-fiber membrane oxygenators with different perfusion modes during normothermic and hypothermic CPB in a simulated neonatal model.
    Undar A; Ji B; Lukic B; Zapanta CM; Kunselman AR; Reibson JD; Khalapyan T; Baer L; Weiss WJ; Rosenberg G; Myers JL
    Perfusion; 2006 Nov; 21(6):381-90. PubMed ID: 17312863
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antegrade selective cerebral perfusion combined with deep hypothermic circulatory arrest on cerebral circulation: comparison between pulsatile and nonpulsatile blood flows.
    Soeda M
    Ann Thorac Cardiovasc Surg; 2007 Apr; 13(2):93-101. PubMed ID: 17505416
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regional low-flow perfusion improves neurologic outcome compared with deep hypothermic circulatory arrest in neonatal piglets.
    Myung RJ; Petko M; Judkins AR; Schears G; Ittenbach RF; Waibel RJ; DeCampli WM
    J Thorac Cardiovasc Surg; 2004 Apr; 127(4):1051-6; discussion 1056-7. PubMed ID: 15052202
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modulation of nuclear factor-kappaB improves cardiac dysfunction associated with cardiopulmonary bypass and deep hypothermic circulatory arrest.
    Duffy JY; McLean KM; Lyons JM; Czaikowski AJ; Wagner CJ; Pearl JM
    Crit Care Med; 2009 Feb; 37(2):577-83. PubMed ID: 19114919
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Low-flow cardiopulmonary bypass produces greater pulmonary dysfunction than circulatory arrest.
    Skaryak LA; Lodge AJ; Kirshbom PM; DiBernardo LR; Wilson BG; Meliones JN; Ungerleider RM; Gaynor JW
    Ann Thorac Surg; 1996 Nov; 62(5):1284-8. PubMed ID: 8893558
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Is maintenance of cerebral hypothermia the principal mechanism by which retrograde cerebral perfusion provides better brain protection than hypothermic circulatory arrest? A study in a porcine model.
    Li Z; Yang L; Summers R; Jackson M; Deslauriers R; Ye J
    J Card Surg; 2004; 19(1):28-35. PubMed ID: 15108786
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.