BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 10543958)

  • 21. Concerted ATP-induced allosteric transitions in GroEL facilitate release of protein substrate domains in an all-or-none manner.
    Kipnis Y; Papo N; Haran G; Horovitz A
    Proc Natl Acad Sci U S A; 2007 Feb; 104(9):3119-24. PubMed ID: 17360617
    [TBL] [Abstract][Full Text] [Related]  

  • 22. From minichaperone to GroEL 3: properties of an active single-ring mutant of GroEL.
    Chatellier J; Hill F; Foster NW; Goloubinoff P; Fersht AR
    J Mol Biol; 2000 Dec; 304(5):897-910. PubMed ID: 11124035
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conformational changes in the chaperonin GroEL: new insights into the allosteric mechanism.
    de Groot BL; Vriend G; Berendsen HJ
    J Mol Biol; 1999 Mar; 286(4):1241-9. PubMed ID: 10047494
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chaperonin-affected refolding of alpha-lactalbumin: effects of nucleotides and the co-chaperonin GroES.
    Makio T; Arai M; Kuwajima K
    J Mol Biol; 1999 Oct; 293(1):125-37. PubMed ID: 10512721
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploring the kinetic requirements for enhancement of protein folding rates in the GroEL cavity.
    Betancourt MR; Thirumalai D
    J Mol Biol; 1999 Apr; 287(3):627-44. PubMed ID: 10092464
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A dynamic model of long-range conformational adaptations triggered by nucleotide binding in GroEL-GroES.
    Skjaerven L; Muga A; Reuter N; Martinez A
    Proteins; 2012 Oct; 80(10):2333-46. PubMed ID: 22576372
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crystal structure of a GroEL-ADP complex in the relaxed allosteric state at 2.7 Å resolution.
    Fei X; Yang D; LaRonde-LeBlanc N; Lorimer GH
    Proc Natl Acad Sci U S A; 2013 Aug; 110(32):E2958-66. PubMed ID: 23861496
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The 13 angstroms structure of a chaperonin GroEL-protein substrate complex by cryo-electron microscopy.
    Falke S; Tama F; Brooks CL; Gogol EP; Fisher MT
    J Mol Biol; 2005 Apr; 348(1):219-30. PubMed ID: 15808865
    [TBL] [Abstract][Full Text] [Related]  

  • 29. GroEL/GroES: structure and function of a two-stroke folding machine.
    Xu Z; Sigler PB
    J Struct Biol; 1998 Dec; 124(2-3):129-41. PubMed ID: 10049801
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dissecting a bimolecular process of MgATP²- binding to the chaperonin GroEL.
    Chen J; Makabe K; Nakamura T; Inobe T; Kuwajima K
    J Mol Biol; 2011 Jul; 410(2):343-56. PubMed ID: 21620859
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Substrate polypeptide presents a load on the apical domains of the chaperonin GroEL.
    Motojima F; Chaudhry C; Fenton WA; Farr GW; Horwich AL
    Proc Natl Acad Sci U S A; 2004 Oct; 101(42):15005-12. PubMed ID: 15479763
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploring the structural dynamics of the E.coli chaperonin GroEL using translation-libration-screw crystallographic refinement of intermediate states.
    Chaudhry C; Horwich AL; Brunger AT; Adams PD
    J Mol Biol; 2004 Sep; 342(1):229-45. PubMed ID: 15313620
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterisation of mutations in GroES that allow GroEL to function as a single ring.
    Liu H; Kovács E; Lund PA
    FEBS Lett; 2009 Jul; 583(14):2365-71. PubMed ID: 19545569
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A mutant chaperonin with rearranged inter-ring electrostatic contacts and temperature-sensitive dissociation.
    Sewell BT; Best RB; Chen S; Roseman AM; Farr GW; Horwich AL; Saibil HR
    Nat Struct Mol Biol; 2004 Nov; 11(11):1128-33. PubMed ID: 15475965
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetics of the reactions of the Escherichia coli molecular chaperone DnaK with ATP: evidence that a three-step reaction precedes ATP hydrolysis.
    Slepenkov SV; Witt SN
    Biochemistry; 1998 Jan; 37(4):1015-24. PubMed ID: 9454592
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nucleotide binding to the chaperonin GroEL: non-cooperative binding of ATP analogs and ADP, and cooperative effect of ATP.
    Inobe T; Makio T; Takasu-Ishikawa E; Terada TP; Kuwajima K
    Biochim Biophys Acta; 2001 Feb; 1545(1-2):160-73. PubMed ID: 11342042
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ionic interactions at both inter-ring contact sites of GroEL are involved in transmission of the allosteric signal: a time-resolved infrared difference study.
    Sot B; von Germar F; Mäntele W; Valpuesta JM; Taneva SG; Muga A
    Protein Sci; 2005 Sep; 14(9):2267-74. PubMed ID: 16081650
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterisation of a GroEL single-ring mutant that supports growth of Escherichia coli and has GroES-dependent ATPase activity.
    Kovács E; Sun Z; Liu H; Scott DJ; Karsisiotis AI; Clarke AR; Burston SG; Lund PA
    J Mol Biol; 2010 Mar; 396(5):1271-83. PubMed ID: 20006619
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The origins and consequences of asymmetry in the chaperonin reaction cycle.
    Burston SG; Ranson NA; Clarke AR
    J Mol Biol; 1995 May; 249(1):138-52. PubMed ID: 7776368
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Allosteric signaling of ATP hydrolysis in GroEL-GroES complexes.
    Ranson NA; Clare DK; Farr GW; Houldershaw D; Horwich AL; Saibil HR
    Nat Struct Mol Biol; 2006 Feb; 13(2):147-52. PubMed ID: 16429154
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.