BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 10543959)

  • 1. An unstructured C-terminal region of the Hsp90 co-chaperone p23 is important for its chaperone function.
    Weikl T; Abelmann K; Buchner J
    J Mol Biol; 1999 Oct; 293(3):685-91. PubMed ID: 10543959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural studies on the co-chaperone Hop and its complexes with Hsp90.
    Onuoha SC; Coulstock ET; Grossmann JG; Jackson SE
    J Mol Biol; 2008 Jun; 379(4):732-44. PubMed ID: 18485364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hsp90 is a direct target of the anti-allergic drugs disodium cromoglycate and amlexanox.
    Okada M; Itoh H; Hatakeyama T; Tokumitsu H; Kobayashi R
    Biochem J; 2003 Sep; 374(Pt 2):433-41. PubMed ID: 12803546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel chaperone-activity-reducing mechanism of the 90-kDa molecular chaperone HSP90.
    Itoh H; Ogura M; Komatsuda A; Wakui H; Miura AB; Tashima Y
    Biochem J; 1999 Nov; 343 Pt 3(Pt 3):697-703. PubMed ID: 10527951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of neuropeptide Y and Hsp90 through a novel peptide binding region.
    Ishiwatari-Hayasaka H; Maruya M; Sreedhar AS; Nemoto TK; Csermely P; Yahara I
    Biochemistry; 2003 Nov; 42(44):12972-80. PubMed ID: 14596612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of GR-mediated transcription by p23 requires interaction with Hsp90.
    Wochnik GM; Young JC; Schmidt U; Holsboer F; Hartl FU; Rein T
    FEBS Lett; 2004 Feb; 560(1-3):35-8. PubMed ID: 14987994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure, stability, and chaperone function of alphaA-crystallin: role of N-terminal region.
    Kundu M; Sen PC; Das KP
    Biopolymers; 2007 Jun; 86(3):177-92. PubMed ID: 17345631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The co-chaperone p23 arrests the Hsp90 ATPase cycle to trap client proteins.
    McLaughlin SH; Sobott F; Yao ZP; Zhang W; Nielsen PR; Grossmann JG; Laue ED; Robinson CV; Jackson SE
    J Mol Biol; 2006 Feb; 356(3):746-58. PubMed ID: 16403413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of the myosin assembly protein UNC-45 as a molecular chaperone for myosin.
    Barral JM; Hutagalung AH; Brinker A; Hartl FU; Epstein HF
    Science; 2002 Jan; 295(5555):669-71. PubMed ID: 11809970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional dissection of cdc37: characterization of domain structure and amino acid residues critical for protein kinase binding.
    Shao J; Irwin A; Hartson SD; Matts RL
    Biochemistry; 2003 Nov; 42(43):12577-88. PubMed ID: 14580204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The chaperone function of cyclophilin 40 maps to a cleft between the prolyl isomerase and tetratricopeptide repeat domains.
    Mok D; Allan RK; Carrello A; Wangoo K; Walkinshaw MD; Ratajczak T
    FEBS Lett; 2006 May; 580(11):2761-8. PubMed ID: 16650407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Domain-mediated dimerization of the Hsp90 cochaperones Harc and Cdc37.
    Roiniotis J; Masendycz P; Ho S; Scholz GM
    Biochemistry; 2005 May; 44(17):6662-9. PubMed ID: 15850399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Co-chaperone Sba1 connects the ATPase reaction of Hsp90 to the progression of the chaperone cycle.
    Richter K; Walter S; Buchner J
    J Mol Biol; 2004 Oct; 342(5):1403-13. PubMed ID: 15364569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cdc37 maintains cellular viability in Schizosaccharomyces pombe independently of interactions with heat-shock protein 90.
    Turnbull EL; Martin IV; Fantes PA
    FEBS J; 2005 Aug; 272(16):4129-40. PubMed ID: 16098195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical and structural studies of the interaction of Cdc37 with Hsp90.
    Zhang W; Hirshberg M; McLaughlin SH; Lazar GA; Grossmann JG; Nielsen PR; Sobott F; Robinson CV; Jackson SE; Laue ED
    J Mol Biol; 2004 Jul; 340(4):891-907. PubMed ID: 15223329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. C-terminal regions of Hsp90 are important for trapping the nucleotide during the ATPase cycle.
    Weikl T; Muschler P; Richter K; Veit T; Reinstein J; Buchner J
    J Mol Biol; 2000 Nov; 303(4):583-92. PubMed ID: 11054293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A domain in the N-terminal part of Hsp26 is essential for chaperone function and oligomerization.
    Haslbeck M; Ignatiou A; Saibil H; Helmich S; Frenzl E; Stromer T; Buchner J
    J Mol Biol; 2004 Oct; 343(2):445-55. PubMed ID: 15451672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative assessment of complex formation of nuclear-receptor accessory proteins.
    Graumann K; Jungbauer A
    Biochem J; 2000 Feb; 345 Pt 3(Pt 3):627-36. PubMed ID: 10642522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for chaperone heterocomplexes containing both Hsp90 and VCP.
    Prince T; Shao J; Matts RL; Hartson SD
    Biochem Biophys Res Commun; 2005 Jun; 331(4):1331-7. PubMed ID: 15883021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of Hsp90 cochaperone interactions reveals a novel mechanism for TPR protein recognition.
    Chadli A; Bruinsma ES; Stensgard B; Toft D
    Biochemistry; 2008 Mar; 47(9):2850-7. PubMed ID: 18211007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.