BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 10544661)

  • 1. [Selenoproteins--atypical function of the UGA codon].
    Rybka K
    Postepy Hig Med Dosw; 1999; 53(4):601-16. PubMed ID: 10544661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Knowing when not to stop: selenocysteine incorporation in eukaryotes.
    Low SC; Berry MJ
    Trends Biochem Sci; 1996 Jun; 21(6):203-8. PubMed ID: 8744353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mammalian selenoproteins.
    Zachara BA
    J Trace Elem Electrolytes Health Dis; 1992 Sep; 6(3):137-51. PubMed ID: 1483033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interplay between termination and translation machinery in eukaryotic selenoprotein synthesis.
    Grundner-Culemann E; Martin GW; Tujebajeva R; Harney JW; Berry MJ
    J Mol Biol; 2001 Jul; 310(4):699-707. PubMed ID: 11453681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ribosomal protein L30 is a component of the UGA-selenocysteine recoding machinery in eukaryotes.
    Chavatte L; Brown BA; Driscoll DM
    Nat Struct Mol Biol; 2005 May; 12(5):408-16. PubMed ID: 15821744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Test system for quantification of stop codon suppression by selenocysteine insertion in mammalian cell lines.
    Kollmus H; McCarthy JE; Flohé L
    Z Ernahrungswiss; 1998; 37 Suppl 1():114-7. PubMed ID: 9558741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA and protein requirements for eukaryotic selenoprotein synthesis.
    Berry MJ; Martin GW; Low SC
    Biomed Environ Sci; 1997 Sep; 10(2-3):182-9. PubMed ID: 9315309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recognition of UGA as a selenocysteine codon in type I deiodinase requires sequences in the 3' untranslated region.
    Berry MJ; Banu L; Chen YY; Mandel SJ; Kieffer JD; Harney JW; Larsen PR
    Nature; 1991 Sep; 353(6341):273-6. PubMed ID: 1832744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selenoprotein synthesis in archaea: identification of an mRNA element of Methanococcus jannaschii probably directing selenocysteine insertion.
    Wilting R; Schorling S; Persson BC; Böck A
    J Mol Biol; 1997 Mar; 266(4):637-41. PubMed ID: 9102456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Type I iodothyronine deiodinase is a selenocysteine-containing enzyme.
    Berry MJ; Banu L; Larsen PR
    Nature; 1991 Jan; 349(6308):438-40. PubMed ID: 1825132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selenocysteine, a highly specific component of certain enzymes, is incorporated by a UGA-directed co-translational mechanism.
    Böck A; Stadtman TC
    Biofactors; 1988 Oct; 1(3):245-50. PubMed ID: 2978458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two distinct SECIS structures capable of directing selenocysteine incorporation in eukaryotes.
    Grundner-Culemann E; Martin GW; Harney JW; Berry MJ
    RNA; 1999 May; 5(5):625-35. PubMed ID: 10334333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism and regulation of selenoprotein synthesis.
    Driscoll DM; Copeland PR
    Annu Rev Nutr; 2003; 23():17-40. PubMed ID: 12524431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selenocysteine incorporation in eukaryotes: insights into mechanism and efficiency from sequence, structure, and spacing proximity studies of the type 1 deiodinase SECIS element.
    Martin GW; Harney JW; Berry MJ
    RNA; 1996 Feb; 2(2):171-82. PubMed ID: 8601283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3'UTRs of glutathione peroxidases differentially affect selenium-dependent mRNA stability and selenocysteine incorporation efficiency.
    Müller C; Wingler K; Brigelius-Flohé R
    Biol Chem; 2003 Jan; 384(1):11-8. PubMed ID: 12674495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selenium in biology: facts and medical perspectives.
    Köhrl J; Brigelius-Flohé R; Böck A; Gärtner R; Meyer O; Flohé L
    Biol Chem; 2000; 381(9-10):849-64. PubMed ID: 11076017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selenoprotein synthesis: UGA does not end the story.
    Allmang C; Krol A
    Biochimie; 2006 Nov; 88(11):1561-71. PubMed ID: 16737768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Eukaryotic initiation factor 4a3 is a selenium-regulated RNA-binding protein that selectively inhibits selenocysteine incorporation.
    Budiman ME; Bubenik JL; Miniard AC; Middleton LM; Gerber CA; Cash A; Driscoll DM
    Mol Cell; 2009 Aug; 35(4):479-89. PubMed ID: 19716792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eukaryotic selenoprotein synthesis: mechanistic insight incorporating new factors and new functions for old factors.
    Squires JE; Berry MJ
    IUBMB Life; 2008 Apr; 60(4):232-5. PubMed ID: 18344183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The redox state of SECIS binding protein 2 controls its localization and selenocysteine incorporation function.
    Papp LV; Lu J; Striebel F; Kennedy D; Holmgren A; Khanna KK
    Mol Cell Biol; 2006 Jul; 26(13):4895-910. PubMed ID: 16782878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.