These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 10545167)

  • 1. Methionine and alanine substitutions show that the formation of wild-type-like structure in the carboxy-terminal domain of T4 lysozyme is a rate-limiting step in folding.
    Gassner NC; Baase WA; Lindstrom JD; Lu J; Dahlquist FW; Matthews BW
    Biochemistry; 1999 Nov; 38(44):14451-60. PubMed ID: 10545167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple alanine replacements within alpha-helix 126-134 of T4 lysozyme have independent, additive effects on both structure and stability.
    Zhang XJ; Baase WA; Matthews BW
    Protein Sci; 1992 Jun; 1(6):761-76. PubMed ID: 1304917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple methionine substitutions are tolerated in T4 lysozyme and have coupled effects on folding and stability.
    Gassner NC; Baase WA; Mooers BH; Busam RD; Weaver LH; Lindstrom JD; Quillin ML; Matthews BW
    Biophys Chem; 2003; 100(1-3):325-40. PubMed ID: 12646375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The introduction of strain and its effects on the structure and stability of T4 lysozyme.
    Liu R; Baase WA; Matthews BW
    J Mol Biol; 2000 Jan; 295(1):127-45. PubMed ID: 10623513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repacking the Core of T4 lysozyme by automated design.
    Mooers BH; Datta D; Baase WA; Zollars ES; Mayo SL; Matthews BW
    J Mol Biol; 2003 Sep; 332(3):741-56. PubMed ID: 12963380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The response of T4 lysozyme to large-to-small substitutions within the core and its relation to the hydrophobic effect.
    Xu J; Baase WA; Baldwin E; Matthews BW
    Protein Sci; 1998 Jan; 7(1):158-77. PubMed ID: 9514271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and genetic analysis of the folding and function of T4 lysozyme.
    Matthews BW
    FASEB J; 1996 Jan; 10(1):35-41. PubMed ID: 8566545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relocation or duplication of the helix A sequence of T4 lysozyme causes only modest changes in structure but can increase or decrease the rate of folding.
    Sagermann M; Baase WA; Mooers BH; Gay L; Matthews BW
    Biochemistry; 2004 Feb; 43(5):1296-301. PubMed ID: 14756565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alanine scanning mutagenesis of the alpha-helix 115-123 of phage T4 lysozyme: effects on structure, stability and the binding of solvent.
    Blaber M; Baase WA; Gassner N; Matthews BW
    J Mol Biol; 1995 Feb; 246(2):317-30. PubMed ID: 7869383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Context-dependent protein stabilization by methionine-to-leucine substitution shown in T4 lysozyme.
    Lipscomb LA; Gassner NC; Snow SD; Eldridge AM; Baase WA; Drew DL; Matthews BW
    Protein Sci; 1998 Mar; 7(3):765-73. PubMed ID: 9541409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Similar hydrophobic replacements of Leu99 and Phe153 within the core of T4 lysozyme have different structural and thermodynamic consequences.
    Eriksson AE; Baase WA; Matthews BW
    J Mol Biol; 1993 Feb; 229(3):747-69. PubMed ID: 8433369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling protein stability: a theoretical analysis of the stability of T4 lysozyme mutants.
    Veenstra DL; Kollman PA
    Protein Eng; 1997 Jul; 10(7):789-807. PubMed ID: 9342145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexibility and ligand exchange in a buried cavity mutant of T4 lysozyme studied by multinuclear NMR.
    Mulder FA; Hon B; Muhandiram DR; Dahlquist FW; Kay LE
    Biochemistry; 2000 Oct; 39(41):12614-22. PubMed ID: 11027141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and thermodynamic analysis of the packing of two alpha-helices in bacteriophage T4 lysozyme.
    Daopin S; Alber T; Baase WA; Wozniak JA; Matthews BW
    J Mol Biol; 1991 Sep; 221(2):647-67. PubMed ID: 1920439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical studies of the response of a protein structure to cavity-creating mutations.
    Lee J; Lee K; Shin S
    Biophys J; 2000 Apr; 78(4):1665-71. PubMed ID: 10733949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of alpha-helix propensity within the context of a folded protein. Sites 44 and 131 in bacteriophage T4 lysozyme.
    Blaber M; Zhang XJ; Lindstrom JD; Pepiot SD; Baase WA; Matthews BW
    J Mol Biol; 1994 Jan; 235(2):600-24. PubMed ID: 8289284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of stabilizing mutations to engineer a charged group within a ligand-binding hydrophobic cavity in T4 lysozyme.
    Liu L; Baase WA; Michael MM; Matthews BW
    Biochemistry; 2009 Sep; 48(37):8842-51. PubMed ID: 19663503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic and structural compensation in "size-switch" core repacking variants of bacteriophage T4 lysozyme.
    Baldwin E; Xu J; Hajiseyedjavadi O; Baase WA; Matthews BW
    J Mol Biol; 1996 Jun; 259(3):542-59. PubMed ID: 8676387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of amino acid residues at turns in the conformational stability and folding of human lysozyme.
    Takano K; Yamagata Y; Yutani K
    Biochemistry; 2000 Jul; 39(29):8655-65. PubMed ID: 10913274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissection of protein structure and folding by directed mutagenesis.
    Baase WA; Eriksson AE; Zhang XJ; Heinz DW; Sauer U; Blaber M; Baldwin EP; Wozniak JA; Matthews BW
    Faraday Discuss; 1992; (93):173-81. PubMed ID: 1290931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.