These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 10545206)
1. Chemical modification and site-directed mutagenesis of human liver arginase: evidence that the imidazole group of histidine-141 is not involved in substrate binding. Carvajal N; Olate J; Salas M; Uribe E; López V; Herrera P; Cerpa J Arch Biochem Biophys; 1999 Nov; 371(2):202-6. PubMed ID: 10545206 [TBL] [Abstract][Full Text] [Related]
2. Evidence that histidine-163 is critical for catalytic activity, but not for substrate binding to Escherichia coli agmatinase. Carvajal N; Olate J; Salas M; López V; Cerpa J; Herrera P; Uribe E Biochem Biophys Res Commun; 1999 Oct; 264(1):196-200. PubMed ID: 10527864 [TBL] [Abstract][Full Text] [Related]
3. L-arginine binding to liver arginase requires proton transfer to gateway residue His141 and coordination of the guanidinium group to the dimanganese(II,II) center. Khangulov SV; Sossong TM; Ash DE; Dismukes GC Biochemistry; 1998 Jun; 37(23):8539-50. PubMed ID: 9622506 [TBL] [Abstract][Full Text] [Related]
4. Insights into the interaction of human liver arginase with tightly and weakly bound manganese ions by chemical modification and site-directed mutagenesis studies. Orellana MS; López V; Uribe E; Fuentes M; Salas M; Carvajal N Arch Biochem Biophys; 2002 Jul; 403(2):155-9. PubMed ID: 12139964 [TBL] [Abstract][Full Text] [Related]
5. Heparinase I from Flavobacterium heparinum. Identification of a critical histidine residue essential for catalysis as probed by chemical modification and site-directed mutagenesis. Godavarti R; Cooney CL; Langer R; Sasisekharan R Biochemistry; 1996 May; 35(21):6846-52. PubMed ID: 8639636 [TBL] [Abstract][Full Text] [Related]
6. Chemical modification and inactivation of rat liver arginase by N-bromosuccinimide: reaction with His141. Daghigh F; Cavalli RC; Soprano DR; Ash DE Arch Biochem Biophys; 1996 Mar; 327(1):107-12. PubMed ID: 8615679 [TBL] [Abstract][Full Text] [Related]
7. Identification of essential histidine residues in 3-deoxy-D-manno-octulosonic acid 8-phosphate synthase: analysis by chemical modification with diethyl pyrocarbonate and site-directed mutagenesis. Sheflyan GY; Duewel HS; Chen G; Woodard RW Biochemistry; 1999 Oct; 38(43):14320-9. PubMed ID: 10572007 [TBL] [Abstract][Full Text] [Related]
8. Site-directed mutagenesis of active site residues of phosphite dehydrogenase. Woodyer R; Wheatley JL; Relyea HA; Rimkus S; van der Donk WA Biochemistry; 2005 Mar; 44(12):4765-74. PubMed ID: 15779903 [TBL] [Abstract][Full Text] [Related]
9. Mutagenesis of rat liver arginase expressed in Escherichia coli: role of conserved histidines. Cavalli RC; Burke CJ; Kawamoto S; Soprano DR; Ash DE Biochemistry; 1994 Sep; 33(35):10652-7. PubMed ID: 8075066 [TBL] [Abstract][Full Text] [Related]
10. Role of histidine residues in EcoP15I DNA methyltransferase activity as probed by chemical modification and site-directed mutagenesis. Jois PS; Madhu N; Rao DN Biochem J; 2008 Mar; 410(3):543-53. PubMed ID: 17995451 [TBL] [Abstract][Full Text] [Related]
11. Essential role of histidine 20 in the catalytic mechanism of Escherichia coli peptidyl-tRNA hydrolase. Goodall JJ; Chen GJ; Page MG Biochemistry; 2004 Apr; 43(15):4583-91. PubMed ID: 15078105 [TBL] [Abstract][Full Text] [Related]
12. Arginine 52 and histidine 54 located in a conserved amino-terminal hydrophobic region (LX2-R52-G-H54-X3-V-L) are important amino acids for the functional and structural integrity of the human liver UDP-glucuronosyltransferase UGT1*6. Senay C; Ouzzine M; Battaglia E; Pless D; Cano V; Burchell B; Radominska A; Magdalou J; Fournel-Gigleux S Mol Pharmacol; 1997 Mar; 51(3):406-13. PubMed ID: 9058595 [TBL] [Abstract][Full Text] [Related]
13. Modification of pig kidney diamine oxidase with ethoxyformic anhydride and rose bengal: evidence for essential histidyl residue at the active site. Shah MA; Ali R Biochem Mol Biol Int; 1994 May; 33(1):9-19. PubMed ID: 8081216 [TBL] [Abstract][Full Text] [Related]
14. Arginase of Bacillus brevis Nagano: purification, properties, and implication in gramicidin S biosynthesis. Kanda M; Ohgishi K; Hanawa T; Saito Y Arch Biochem Biophys; 1997 Aug; 344(1):37-42. PubMed ID: 9244379 [TBL] [Abstract][Full Text] [Related]
15. Mutational analysis of substrate recognition by human arginase type I--agmatinase activity of the N130D variant. Alarcón R; Orellana MS; Neira B; Uribe E; García JR; Carvajal N FEBS J; 2006 Dec; 273(24):5625-31. PubMed ID: 17212779 [TBL] [Abstract][Full Text] [Related]
16. Biochemical and biophysical properties of a highly active recombinant arginase from Leishmania (Leishmania) amazonensis and subcellular localization of native enzyme. da Silva ER; da Silva MF; Fischer H; Mortara RA; Mayer MG; Framesqui K; Silber AM; Floeter-Winter LM Mol Biochem Parasitol; 2008 Jun; 159(2):104-11. PubMed ID: 18400316 [TBL] [Abstract][Full Text] [Related]
17. Mechanistic and metabolic inferences from the binding of substrate analogues and products to arginase. Cox JD; Cama E; Colleluori DM; Pethe S; Boucher JL; Mansuy D; Ash DE; Christianson DW Biochemistry; 2001 Mar; 40(9):2689-701. PubMed ID: 11258880 [TBL] [Abstract][Full Text] [Related]
18. Probing the role of the hyper-reactive histidine residue of arginase. Colleluori DM; Reczkowski RS; Emig FA; Cama E; Cox JD; Scolnick LR; Compher K; Jude K; Han S; Viola RE; Christianson DW; Ash DE Arch Biochem Biophys; 2005 Dec; 444(1):15-26. PubMed ID: 16266687 [TBL] [Abstract][Full Text] [Related]
19. The activity of Plasmodium falciparum arginase is mediated by a novel inter-monomer salt-bridge between Glu295-Arg404. Wells GA; Müller IB; Wrenger C; Louw AI FEBS J; 2009 Jul; 276(13):3517-30. PubMed ID: 19456858 [TBL] [Abstract][Full Text] [Related]