These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 10545323)
1. High-resolution structure of the conger eel galectin, congerin I, in lactose-liganded and ligand-free forms: emergence of a new structure class by accelerated evolution. Shirai T; Mitsuyama C; Niwa Y; Matsui Y; Hotta H; Yamane T; Kamiya H; Ishii C; Ogawa T; Muramoto K Structure; 1999 Oct; 7(10):1223-33. PubMed ID: 10545323 [TBL] [Abstract][Full Text] [Related]
2. Crystal structure of a conger eel galectin (congerin II) at 1.45A resolution: implication for the accelerated evolution of a new ligand-binding site following gene duplication. Shirai T; Matsui Y; Shionyu-Mitsuyama C; Yamane T; Kamiya H; Ishii C; Ogawa T; Muramoto K J Mol Biol; 2002 Aug; 321(5):879-89. PubMed ID: 12206768 [TBL] [Abstract][Full Text] [Related]
3. Functional and structural characterization of multiple galectins from the skin mucus of conger eel, Conger myriaster. Muramoto K; Kagawa D; Sato T; Ogawa T; Nishida Y; Kamiya H Comp Biochem Physiol B Biochem Mol Biol; 1999 May; 123(1):33-45. PubMed ID: 10425711 [TBL] [Abstract][Full Text] [Related]
4. Accelerated evolution in the protein-coding region of galectin cDNAs, congerin I and congerin II, from skin mucus of conger eel (Conger myriaster). Ogawa T; Ishii C; Kagawa D; Muramoto K; Kamiya H Biosci Biotechnol Biochem; 1999 Jul; 63(7):1203-8. PubMed ID: 10478448 [TBL] [Abstract][Full Text] [Related]
5. In vitro evolutionary thermostabilization of congerin II: a limited reproduction of natural protein evolution by artificial selection pressure. Shionyu-Mitsuyama C; Ito Y; Konno A; Miwa Y; Ogawa T; Muramoto K; Shirai T J Mol Biol; 2005 Mar; 347(2):385-97. PubMed ID: 15740748 [TBL] [Abstract][Full Text] [Related]
6. Allosteric regulation of the carbohydrate-binding ability of a novel conger eel galectin by D-mannoside. Watanabe M; Nakamura O; Muramoto K; Ogawa T J Biol Chem; 2012 Sep; 287(37):31061-72. PubMed ID: 22810239 [TBL] [Abstract][Full Text] [Related]
7. X-ray crystal structure of the human dimeric S-Lac lectin, L-14-II, in complex with lactose at 2.9-A resolution. Lobsanov YD; Gitt MA; Leffler H; Barondes SH; Rini JM J Biol Chem; 1993 Dec; 268(36):27034-8. PubMed ID: 8262940 [TBL] [Abstract][Full Text] [Related]
8. Molecular diversity of skin mucus lectins in fish. Suzuki Y; Tasumi S; Tsutsui S; Okamoto M; Suetake H Comp Biochem Physiol B Biochem Mol Biol; 2003 Dec; 136(4):723-30. PubMed ID: 14662297 [TBL] [Abstract][Full Text] [Related]
9. Tracing protein evolution through ancestral structures of fish galectin. Konno A; Kitagawa A; Watanabe M; Ogawa T; Shirai T Structure; 2011 May; 19(5):711-21. PubMed ID: 21565705 [TBL] [Abstract][Full Text] [Related]
10. Possible immune functions of congerin, a mucosal galectin, in the intestinal lumen of Japanese conger eel. Nakamura O; Inaga Y; Suzuki S; Tsutsui S; Muramoto K; Kamiya H; Watanabe T Fish Shellfish Immunol; 2007 Sep; 23(3):683-92. PubMed ID: 17596964 [TBL] [Abstract][Full Text] [Related]
11. Galectin containing cells in the skin and mucosal tissues in Japanese conger eel, Conger myriaster: an immunohistochemical study. Nakamura O; Watanabe T; Kamiya H; Muramoto K Dev Comp Immunol; 2001; 25(5-6):431-7. PubMed ID: 11356222 [TBL] [Abstract][Full Text] [Related]
12. The amino-acid sequence of a lectin from conger eel, Conger myriaster, skin mucus. Muramoto K; Kamiya H Biochim Biophys Acta; 1992 Apr; 1116(2):129-36. PubMed ID: 1581341 [TBL] [Abstract][Full Text] [Related]
13. The speciation of conger eel galectins by rapid adaptive evolution. Ogawa T; Shirai T; Shionyu-Mitsuyama C; Yamane T; Kamiya H; Muramoto K Glycoconj J; 2002; 19(7-9):451-8. PubMed ID: 14758068 [TBL] [Abstract][Full Text] [Related]
14. Soluble beta-galactosyl-binding lectin (galectin) from toad ovary: crystallographic studies of two protein-sugar complexes. Bianchet MA; Ahmed H; Vasta GR; Amzel LM Proteins; 2000 Aug; 40(3):378-88. PubMed ID: 10861929 [TBL] [Abstract][Full Text] [Related]
15. Structure based studies of the adaptive diversification process of congerins. Shirai T; Shionyu-Mitsuyama C; Ogawa T; Muramoto K Mol Divers; 2006 Nov; 10(4):567-73. PubMed ID: 16972013 [TBL] [Abstract][Full Text] [Related]
16. Crystal structure of the galectin-9 N-terminal carbohydrate recognition domain from Mus musculus reveals the basic mechanism of carbohydrate recognition. Nagae M; Nishi N; Murata T; Usui T; Nakamura T; Wakatsuki S; Kato R J Biol Chem; 2006 Nov; 281(47):35884-93. PubMed ID: 16990264 [TBL] [Abstract][Full Text] [Related]
18. Evidence for subsites in the galectins involved in sugar binding at the nonreducing end of the central galactose of oligosaccharide ligands: sequence analysis, homology modeling and mutagenesis studies of hamster galectin-3. Henrick K; Bawumia S; Barboni EA; Mehul B; Hughes RC Glycobiology; 1998 Jan; 8(1):45-57. PubMed ID: 9451013 [TBL] [Abstract][Full Text] [Related]
19. Structural basis of multivalent galactose-based dendrimer recognition by human galectin-7. Ramaswamy S; Sleiman MH; Masuyer G; Arbez-Gindre C; Micha-Screttas M; Calogeropoulou T; Steele BR; Acharya KR FEBS J; 2015 Jan; 282(2):372-87. PubMed ID: 25367374 [TBL] [Abstract][Full Text] [Related]
20. Crystal structure of human Charcot-Leyden crystal protein, an eosinophil lysophospholipase, identifies it as a new member of the carbohydrate-binding family of galectins. Leonidas DD; Elbert BL; Zhou Z; Leffler H; Ackerman SJ; Acharya KR Structure; 1995 Dec; 3(12):1379-93. PubMed ID: 8747464 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]