BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 10546069)

  • 1. Review of the molecular modelling studies of the cytochrome P-450 estrogen synthetase enzyme, aromatase.
    Ahmed S
    Drug Des Discov; 1998 Oct; 15(4):239-52. PubMed ID: 10546069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular modelling study of the binding of inhibitors of aromatase to the cytochrome P-450 heme.
    Ahmed S; Davis PJ; Owen CP
    Drug Des Discov; 1996 Oct; 14(2):91-102. PubMed ID: 9010616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and biochemical evaluation of novel inhibitors of aromatase (AR) using an enhanced representation of the active site of AR derived from the consideration of the reaction mechanism.
    Ahmed S; Amanuel Y
    Biochem Biophys Res Commun; 2000 Jan; 267(1):356-61. PubMed ID: 10623624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding characteristics of aromatase inhibitors and phytoestrogens to human aromatase.
    Chen S; Kao YC; Laughton CA
    J Steroid Biochem Mol Biol; 1997 Apr; 61(3-6):107-15. PubMed ID: 9365179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding characteristics of seven inhibitors of human aromatase: a site-directed mutagenesis study.
    Kao YC; Cam LL; Laughton CA; Zhou D; Chen S
    Cancer Res; 1996 Aug; 56(15):3451-60. PubMed ID: 8758911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular modelling study of pyrrolidine-2,5-dione based aromatase inhibitors and other known inhibitors.
    Ahmed S
    Drug Des Discov; 1996 Mar; 14(1):77-89. PubMed ID: 8854046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aromatase inhibition and inactivation.
    Brodie A; Long B
    Clin Cancer Res; 2001 Dec; 7(12 Suppl):4343s-4349s; discussion 4411s-4412s. PubMed ID: 11916223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual aromatase-sulfatase inhibitors based on the anastrozole template: synthesis, in vitro SAR, molecular modelling and in vivo activity.
    Jackson T; Woo LW; Trusselle MN; Chander SK; Purohit A; Reed MJ; Potter BV
    Org Biomol Chem; 2007 Sep; 5(18):2940-52. PubMed ID: 17728860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lead optimization providing a series of flavone derivatives as potent nonsteroidal inhibitors of the cytochrome P450 aromatase enzyme.
    Gobbi S; Cavalli A; Rampa A; Belluti F; Piazzi L; Paluszcak A; Hartmann RW; Recanatini M; Bisi A
    J Med Chem; 2006 Jul; 49(15):4777-80. PubMed ID: 16854084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining computational and biochemical studies for a rationale on the anti-aromatase activity of natural polyphenols.
    Neves MA; Dinis TC; Colombo G; Sá e Melo ML
    ChemMedChem; 2007 Dec; 2(12):1750-62. PubMed ID: 17910019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel oxazolidinone based compounds as inhibitors of aromatase and the use of the substrate-heme complex approach in the rationalisation of these compounds.
    Ahmed S; Adat S; Murrells A; Owen CP
    Biochem Biophys Res Commun; 2002 Jun; 294(2):380-3. PubMed ID: 12051723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular basis for the interaction of four different classes of substrates and inhibitors with human aromatase.
    Hong Y; Cho M; Yuan YC; Chen S
    Biochem Pharmacol; 2008 Mar; 75(5):1161-9. PubMed ID: 18184606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human P450s involved in drug metabolism and the use of structural modelling for understanding substrate selectivity and binding affinity.
    Lewis DF; Ito Y
    Xenobiotica; 2009 Aug; 39(8):625-35. PubMed ID: 19514836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and aromatase inhibitory activity of novel pyridine-containing isoflavones.
    Kim YW; Hackett JC; Brueggemeier RW
    J Med Chem; 2004 Jul; 47(16):4032-40. PubMed ID: 15267241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A three-dimensional model of CYP19 aromatase for structure-based drug design.
    Karkola S; Höltje HD; Wähälä K
    J Steroid Biochem Mol Biol; 2007; 105(1-5):63-70. PubMed ID: 17583493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of the substrate-heme complex approach in the design, synthesis, biochemical evaluation, and rationalization of the inhibitory activity of a range of azole compounds against cholesterol side chain cleavage enzyme.
    Ahmed S
    Biochem Biophys Res Commun; 2000 Aug; 275(1):75-6. PubMed ID: 10944444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and biochemical studies of 17-substituted androst-3-enes and 3,4-epoxyandrostanes as aromatase inhibitors.
    Cepa MM; Tavares da Silva EJ; Correia-da-Silva G; Roleira FM; Teixeira NA
    Steroids; 2008 Dec; 73(14):1409-15. PubMed ID: 18691607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms.
    Lüdemann SK; Lounnas V; Wade RC
    J Mol Biol; 2000 Nov; 303(5):797-811. PubMed ID: 11061976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The binding of lignans, flavonoids and coumestrol to CYP450 aromatase: a molecular modelling study.
    Karkola S; Wähälä K
    Mol Cell Endocrinol; 2009 Mar; 301(1-2):235-44. PubMed ID: 19000737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-steroidal aromatase inhibitors based on a biphenyl scaffold: synthesis, in vitro SAR, and molecular modelling.
    Jackson T; Woo LW; Trusselle MN; Purohit A; Reed MJ; Potter BV
    ChemMedChem; 2008 Apr; 3(4):603-18. PubMed ID: 18236493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.