These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 10546438)

  • 1. Coexistence of three microbial populations competing for three complementary nutrients in a chemostat.
    Vayenas DV; Pavlou S
    Math Biosci; 1999 Oct; 161(1-2):1-13. PubMed ID: 10546438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coexistence of three competing microbial populations in a chemostat with periodically varying dilution rate.
    Lenas P; Pavlou S
    Math Biosci; 1995 Oct; 129(2):111-42. PubMed ID: 7549217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the coexistence of three microbial populations competing for two complementary substrates in configurations of interconnected chemostats.
    Thomopoulos NA; Vayenas DV; Pavlou S
    Math Biosci; 1998 Dec; 154(2):87-102. PubMed ID: 9949649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmid-bearing, plasmid-free organisms competing for two complementary nutrients in a chemostat.
    Hsu SB; Tzeng YH
    Math Biosci; 2002; 179(2):183-206. PubMed ID: 12208615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Periodic, quasi-periodic, and chaotic coexistence of two competing microbial populations in a periodically operated chemostat.
    Lenas P; Pavlou S
    Math Biosci; 1994 May; 121(1):61-110. PubMed ID: 8204991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competition in chemostat-type equations with two habitats.
    Nakaoka S; Takeuchi Y
    Math Biosci; 2006 May; 201(1-2):157-71. PubMed ID: 16448673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chaotic dynamics of a food web in a chemostat.
    Vayenas DV; Pavlou S
    Math Biosci; 1999; 162(1-2):69-84. PubMed ID: 10616281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple limit cycles in the chemostat with variable yield.
    Pilyugin SS; Waltman P
    Math Biosci; 2003 Apr; 182(2):151-66. PubMed ID: 12591622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The operating diagram of a model of two competitors in a chemostat with an external inhibitor.
    Dellal M; Lakrib M; Sari T
    Math Biosci; 2018 Aug; 302():27-45. PubMed ID: 29803551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oscillations of two competing microbial populations in configurations of two interconnected chemostats.
    Lenas P; Thomopoulos NA; Vayenas DV; Pavlou S
    Math Biosci; 1998 Feb; 148(1):43-63. PubMed ID: 9597824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complex dynamics of microbial competition in the gradostat.
    Gaki A; Theodorou A; Vayenas DV; Pavlou S
    J Biotechnol; 2009 Jan; 139(1):38-46. PubMed ID: 18809443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Competition in the presence of a virus in an aquatic system: an SIS model in the chemostat.
    Northcott K; Imran M; Wolkowicz GS
    J Math Biol; 2012 May; 64(6):1043-86. PubMed ID: 21671030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple limit cycles in the standard model of three species competition for three essential resources.
    Baer SM; Li B; Smith HL
    J Math Biol; 2006 Jun; 52(6):745-60. PubMed ID: 16463185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A periodic Droop model for two species competition in a chemostat.
    White MC; Zhao XQ
    Bull Math Biol; 2009 Jan; 71(1):145-61. PubMed ID: 18825462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coexistence in the chemostat as a result of metabolic by-products.
    Hesseler J; Schmidt JK; Reichl U; Flockerzi D
    J Math Biol; 2006 Oct; 53(4):556-84. PubMed ID: 16819650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Periodic coexistence of four species competing for three essential resources.
    Li B; Smith HL
    Math Biosci; 2003 Aug; 184(2):115-35. PubMed ID: 12832144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Periodic solution of a chemostat model with Monod growth rate and impulsive state feedback control.
    Guo H; Chen L
    J Theor Biol; 2009 Oct; 260(4):502-9. PubMed ID: 19615380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Competition of two microbial populations for a single resource in a chemostat when one of them exhibits wall attachment.
    Baltzis BC; Fredrickson AG
    Biotechnol Bioeng; 1983 Oct; 25(10):2419-39. PubMed ID: 18548571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global dynamics of microbial competition for two resources with internal storage.
    Li B; Smith HL
    J Math Biol; 2007 Oct; 55(4):481-515. PubMed ID: 17505828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacteria and lytic phage coexistence in a chemostat with periodic nutrient supply.
    Aviram I; Rabinovitch A
    Bull Math Biol; 2014 Jan; 76(1):225-44. PubMed ID: 24222038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.