These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 10546442)

  • 1. Power-law modeling based on least-squares minimization criteria.
    Hernández-Bermejo B; Fairén V; Sorribas A
    Math Biosci; 1999 Oct; 161(1-2):83-94. PubMed ID: 10546442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Power-law modeling based on least-squares criteria: consequences for system analysis and simulation.
    Hernández-Bermejo B; Fairén V; Sorribas A
    Math Biosci; 2000 Oct; 167(2):87-107. PubMed ID: 10998483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accuracy of alternative representations for integrated biochemical systems.
    Voit EO; Savageau MA
    Biochemistry; 1987 Oct; 26(21):6869-80. PubMed ID: 3427048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of rate law approximations in bottom-up kinetic models of metabolism.
    Du B; Zielinski DC; Kavvas ES; Dräger A; Tan J; Zhang Z; Ruggiero KE; Arzumanyan GA; Palsson BO
    BMC Syst Biol; 2016 Jun; 10(1):40. PubMed ID: 27266508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergism analysis of biochemical systems. I. Conceptual framework.
    Salvador A
    Math Biosci; 2000 Feb; 163(2):105-29. PubMed ID: 10701301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Canonical sensitivities: a useful tool to deal with large perturbations in metabolic network modeling.
    Guebel DV
    In Silico Biol; 2004; 4(2):163-82. PubMed ID: 15107021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematical formalisms based on approximated kinetic representations for modeling genetic and metabolic pathways.
    Alves R; Vilaprinyo E; Hernádez-Bermejo B; Sorribas A
    Biotechnol Genet Eng Rev; 2008; 25():1-40. PubMed ID: 21412348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Power-law approximation and similarity properties of metabolic regulatory characteristics].
    Kholodenko BN
    Biofizika; 1983; 28(4):674-81. PubMed ID: 6615906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Approximative kinetic formats used in metabolic network modeling.
    Heijnen JJ
    Biotechnol Bioeng; 2005 Sep; 91(5):534-45. PubMed ID: 16003779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated piecewise power-law modeling of biological systems.
    Machina A; Ponosov A; Voit EO
    J Biotechnol; 2010 Sep; 149(3):154-65. PubMed ID: 20060428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bringing metabolic networks to life: convenience rate law and thermodynamic constraints.
    Liebermeister W; Klipp E
    Theor Biol Med Model; 2006 Dec; 3():41. PubMed ID: 17173669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative assessment of linear least-squares, nonlinear least-squares, and Patlak graphical method for regional and local quantitative tracer kinetic modeling in cerebral dynamic
    Ben Bouallègue F; Vauchot F; Mariano-Goulart D
    Med Phys; 2019 Mar; 46(3):1260-1271. PubMed ID: 30592540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cooperativity and saturation in biochemical networks: a saturable formalism using Taylor series approximations.
    Sorribas A; Hernández-Bermejo B; Vilaprinyo E; Alves R
    Biotechnol Bioeng; 2007 Aug; 97(5):1259-77. PubMed ID: 17187441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of variant theories of intact biochemical systems. I. Enzyme-enzyme interactions and biochemical systems theory.
    Sorribas A; Savageau MA
    Math Biosci; 1989 Jun; 94(2):161-93. PubMed ID: 2520168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical systems theory: increasing predictive power by using second-order derivatives measurements.
    Cascante M; Sorribas A; Franco R; Canela EI
    J Theor Biol; 1991 Apr; 149(4):521-35. PubMed ID: 2062106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of fractal kinetics on molecular recognition.
    Savageau MA
    J Mol Recognit; 1993 Dec; 6(4):149-57. PubMed ID: 7917410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic Engineering with power-law and linear-logarithmic systems.
    Marin-Sanguino A; Torres NV; Mendoza ER; Oesterhelt D
    Math Biosci; 2009 Mar; 218(1):50-8. PubMed ID: 19174172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The tricarboxylic acid cycle in Dictyostelium discoideum. I. Formulation of alternative kinetic representations.
    Shiraishi F; Savageau MA
    J Biol Chem; 1992 Nov; 267(32):22912-8. PubMed ID: 1429641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geometry of nonlinear least squares with applications to sloppy models and optimization.
    Transtrum MK; Machta BB; Sethna JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036701. PubMed ID: 21517619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolism of citric acid production by Aspergillus niger: model definition, steady-state analysis and constrained optimization of citric acid production rate.
    Alvarez-Vasquez F; González-Alcón C; Torres NV
    Biotechnol Bioeng; 2000 Oct; 70(1):82-108. PubMed ID: 10940866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.