These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 10547290)
1. Structure determination of the glutamate dehydrogenase from the hyperthermophile Thermococcus litoralis and its comparison with that from Pyrococcus furiosus. Britton KL; Yip KS; Sedelnikova SE; Stillman TJ; Adams MW; Ma K; Maeder DL; Robb FT; Tolliday N; Vetriani C; Rice DW; Baker PJ J Mol Biol; 1999 Nov; 293(5):1121-32. PubMed ID: 10547290 [TBL] [Abstract][Full Text] [Related]
2. Crystal structure of glutamate dehydrogenase from the hyperthermophilic eubacterium Thermotoga maritima at 3.0 A resolution. Knapp S; de Vos WM; Rice D; Ladenstein R J Mol Biol; 1997 Apr; 267(4):916-32. PubMed ID: 9135121 [TBL] [Abstract][Full Text] [Related]
3. The first crystal structure of hyperthermostable NAD-dependent glutamate dehydrogenase from Pyrobaculum islandicum. Bhuiya MW; Sakuraba H; Ohshima T; Imagawa T; Katunuma N; Tsuge H J Mol Biol; 2005 Jan; 345(2):325-37. PubMed ID: 15571725 [TBL] [Abstract][Full Text] [Related]
4. Engineering activity and stability of Thermotoga maritima glutamate dehydrogenase. II: construction of a 16-residue ion-pair network at the subunit interface. Lebbink JH; Knapp S; van der Oost J; Rice D; Ladenstein R; de Vos WM J Mol Biol; 1999 Jun; 289(2):357-69. PubMed ID: 10366510 [TBL] [Abstract][Full Text] [Related]
6. The 1.5 A resolution crystal structure of the carbamate kinase-like carbamoyl phosphate synthetase from the hyperthermophilic Archaeon pyrococcus furiosus, bound to ADP, confirms that this thermostable enzyme is a carbamate kinase, and provides insight into substrate binding and stability in carbamate kinases. Ramón-Maiques S; Marina A; Uriarte M; Fita I; Rubio V J Mol Biol; 2000 Jun; 299(2):463-76. PubMed ID: 10860751 [TBL] [Abstract][Full Text] [Related]
7. Overexpression, physicochemical characterization, and modeling of a hyperthermophilic pyrococcus furiosus type 2 IPP isomerase. Dutoit R; de Ruyck J; Durisotti V; Legrain C; Jacobs E; Wouters J Proteins; 2008 Jun; 71(4):1699-707. PubMed ID: 18076031 [TBL] [Abstract][Full Text] [Related]
8. Crystal structure of a pol alpha family DNA polymerase from the hyperthermophilic archaeon Thermococcus sp. 9 degrees N-7. Rodriguez AC; Park HW; Mao C; Beese LS J Mol Biol; 2000 Jun; 299(2):447-62. PubMed ID: 10860752 [TBL] [Abstract][Full Text] [Related]
9. Extremely thermostable glutamate dehydrogenase (GDH) from the freshwater archaeon Thermococcus waiotapuensis: cloning and comparison with two marine hyperthermophilic GDHs. Lee MK; González JM; Robb FT Extremophiles; 2002 Apr; 6(2):151-9. PubMed ID: 12013436 [TBL] [Abstract][Full Text] [Related]
10. Crystal structure of a subtilisin homologue, Tk-SP, from Thermococcus kodakaraensis: requirement of a C-terminal beta-jelly roll domain for hyperstability. Foophow T; Tanaka S; Angkawidjaja C; Koga Y; Takano K; Kanaya S J Mol Biol; 2010 Jul; 400(4):865-77. PubMed ID: 20595040 [TBL] [Abstract][Full Text] [Related]
12. X-ray crystalline structures of pyrrolidone carboxyl peptidase from a hyperthermophile, Pyrococcus furiosus, and its cys-free mutant. Tanaka H; Chinami M; Mizushima T; Ogasahara K; Ota M; Tsukihara T; Yutani K J Biochem; 2001 Jul; 130(1):107-18. PubMed ID: 11432786 [TBL] [Abstract][Full Text] [Related]
13. Insights into thermal stability from a comparison of the glutamate dehydrogenases from Pyrococcus furiosus and Thermococcus litoralis. Britton KL; Baker PJ; Borges KM; Engel PC; Pasquo A; Rice DW; Robb FT; Scandurra R; Stillman TJ; Yip KS Eur J Biochem; 1995 May; 229(3):688-95. PubMed ID: 7758464 [TBL] [Abstract][Full Text] [Related]
14. Crystal structure of ribosomal protein L30e from the extreme thermophile Thermococcus celer: thermal stability and RNA binding. Chen YW; Bycroft M; Wong KB Biochemistry; 2003 Mar; 42(10):2857-65. PubMed ID: 12627951 [TBL] [Abstract][Full Text] [Related]
15. Crystal structure of highly thermostable glycerol kinase from a hyperthermophilic archaeon in a dimeric form. Koga Y; Katsumi R; You DJ; Matsumura H; Takano K; Kanaya S FEBS J; 2008 May; 275(10):2632-43. PubMed ID: 18422647 [TBL] [Abstract][Full Text] [Related]
16. Tiny TIM: a small, tetrameric, hyperthermostable triosephosphate isomerase. Walden H; Bell GS; Russell RJ; Siebers B; Hensel R; Taylor GL J Mol Biol; 2001 Mar; 306(4):745-57. PubMed ID: 11243785 [TBL] [Abstract][Full Text] [Related]
17. Engineering activity and stability of Thermotoga maritima glutamate dehydrogenase. I. Introduction of a six-residue ion-pair network in the hinge region. Lebbink JH; Knapp S; van der Oost J; Rice D; Ladenstein R; de Vos WM J Mol Biol; 1998 Jul; 280(2):287-96. PubMed ID: 9654452 [TBL] [Abstract][Full Text] [Related]
18. Structural insight into the molecular basis of polyextremophilicity of short-chain alcohol dehydrogenase from the hyperthermophilic archaeon Thermococcus sibiricus. Bezsudnova EY; Boyko KM; Polyakov KM; Dorovatovskiy PV; Stekhanova TN; Gumerov VM; Ravin NV; Skryabin KG; Kovalchuk MV; Popov VO Biochimie; 2012 Dec; 94(12):2628-38. PubMed ID: 22885278 [TBL] [Abstract][Full Text] [Related]
19. The crystal structure of d-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaeon Methanothermus fervidus in the presence of NADP(+) at 2.1 A resolution. Charron C; Talfournier F; Isupov MN; Littlechild JA; Branlant G; Vitoux B; Aubry A J Mol Biol; 2000 Mar; 297(2):481-500. PubMed ID: 10715215 [TBL] [Abstract][Full Text] [Related]
20. Substrate ambiguity and crystal structure of Pyrococcus furiosus 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase: an ancestral 3-deoxyald-2-ulosonate-phosphate synthase? Schofield LR; Anderson BF; Patchett ML; Norris GE; Jameson GB; Parker EJ Biochemistry; 2005 Sep; 44(36):11950-62. PubMed ID: 16142893 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]