These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
467 related articles for article (PubMed ID: 10547298)
1. Salt bridge stability in monomeric proteins. Kumar S; Nussinov R J Mol Biol; 1999 Nov; 293(5):1241-55. PubMed ID: 10547298 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of direct and cooperative contributions towards the strength of buried hydrogen bonds and salt bridges. Albeck S; Unger R; Schreiber G J Mol Biol; 2000 May; 298(3):503-20. PubMed ID: 10772866 [TBL] [Abstract][Full Text] [Related]
4. Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins. Avbelj F J Mol Biol; 2000 Jul; 300(5):1335-59. PubMed ID: 10903873 [TBL] [Abstract][Full Text] [Related]
5. Complex salt bridges in proteins: statistical analysis of structure and function. Musafia B; Buchner V; Arad D J Mol Biol; 1995 Dec; 254(4):761-70. PubMed ID: 7500348 [TBL] [Abstract][Full Text] [Related]
6. Statistical characterization of salt bridges in proteins. Sarakatsannis JN; Duan Y Proteins; 2005 Sep; 60(4):732-9. PubMed ID: 16021620 [TBL] [Abstract][Full Text] [Related]
7. Protein stabilization by salt bridges: concepts, experimental approaches and clarification of some misunderstandings. Bosshard HR; Marti DN; Jelesarov I J Mol Recognit; 2004; 17(1):1-16. PubMed ID: 14872533 [TBL] [Abstract][Full Text] [Related]
8. The stability of salt bridges at high temperatures: implications for hyperthermophilic proteins. Elcock AH J Mol Biol; 1998 Nov; 284(2):489-502. PubMed ID: 9813132 [TBL] [Abstract][Full Text] [Related]
9. Defining the role of salt bridges in protein stability. Jelesarov I; Karshikoff A Methods Mol Biol; 2009; 490():227-60. PubMed ID: 19157086 [TBL] [Abstract][Full Text] [Related]
10. Statistical analysis of protein structures suggests that buried ionizable residues in proteins are hydrogen bonded or form salt bridges. Bush J; Makhatadze GI Proteins; 2011 Jul; 79(7):2027-32. PubMed ID: 21560169 [TBL] [Abstract][Full Text] [Related]
11. Molecular dynamics simulations of the hyperthermophilic protein sac7d from Sulfolobus acidocaldarius: contribution of salt bridges to thermostability. de Bakker PI; Hünenberger PH; McCammon JA J Mol Biol; 1999 Jan; 285(4):1811-30. PubMed ID: 9917414 [TBL] [Abstract][Full Text] [Related]
12. Protein binding versus protein folding: the role of hydrophilic bridges in protein associations. Xu D; Lin SL; Nussinov R J Mol Biol; 1997 Jan; 265(1):68-84. PubMed ID: 8995525 [TBL] [Abstract][Full Text] [Related]
13. Electrostatic contributions to the stability of halophilic proteins. Elcock AH; McCammon JA J Mol Biol; 1998 Jul; 280(4):731-48. PubMed ID: 9677300 [TBL] [Abstract][Full Text] [Related]
14. Effects of high temperature on desolvation costs of salt bridges across protein binding interfaces: similarities and differences between implicit and explicit solvent models. Salari R; Chong LT J Phys Chem B; 2012 Mar; 116(8):2561-7. PubMed ID: 22300130 [TBL] [Abstract][Full Text] [Related]
15. On the role of electrostatic interactions in the design of protein-protein interfaces. Sheinerman FB; Honig B J Mol Biol; 2002 Apr; 318(1):161-77. PubMed ID: 12054776 [TBL] [Abstract][Full Text] [Related]
16. Thermostability of salt bridges versus hydrophobic interactions in proteins probed by statistical potentials. Folch B; Rooman M; Dehouck Y J Chem Inf Model; 2008 Jan; 48(1):119-27. PubMed ID: 18161956 [TBL] [Abstract][Full Text] [Related]
17. Patterns in ionizable side chain interactions in protein structures. Gandini D; Gogioso L; Bolognesi M; Bordo D Proteins; 1996 Apr; 24(4):439-49. PubMed ID: 9162945 [TBL] [Abstract][Full Text] [Related]
18. Electrostatics in the stability and misfolding of the prion protein: salt bridges, self energy, and solvation. Guest WC; Cashman NR; Plotkin SS Biochem Cell Biol; 2010 Apr; 88(2):371-81. PubMed ID: 20453937 [TBL] [Abstract][Full Text] [Related]
19. Crystal structure of a glutamate/aspartate binding protein complexed with a glutamate molecule: structural basis of ligand specificity at atomic resolution. Hu Y; Fan CP; Fu G; Zhu D; Jin Q; Wang DC J Mol Biol; 2008 Sep; 382(1):99-111. PubMed ID: 18640128 [TBL] [Abstract][Full Text] [Related]
20. Surface salt bridges, double-mutant cycles, and protein stability: an experimental and computational analysis of the interaction of the Asp 23 side chain with the N-terminus of the N-terminal domain of the ribosomal protein l9. Luisi DL; Snow CD; Lin JJ; Hendsch ZS; Tidor B; Raleigh DP Biochemistry; 2003 Jun; 42(23):7050-60. PubMed ID: 12795600 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]