These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 10547816)

  • 1. Models for studying initial adhesion and surface growth in biofilm formation on surfaces.
    Gottenbos B; van der Mei HC; Busscher HJ
    Methods Enzymol; 1999; 310():523-34. PubMed ID: 10547816
    [No Abstract]   [Full Text] [Related]  

  • 2. A three-phase in-vitro system for studying Pseudomonas aeruginosa adhesion and biofilm formation upon hydrogel contact lenses.
    Rändler C; Matthes R; McBain AJ; Giese B; Fraunholz M; Sietmann R; Kohlmann T; Hübner NO; Kramer A
    BMC Microbiol; 2010 Nov; 10():282. PubMed ID: 21062489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Primary adhesion of Pseudomonas aeruginosa to inanimate surfaces including biomaterials.
    Ahearn DG; Borazjani RN; Simmons RB; Gabriel MM
    Methods Enzymol; 1999; 310():551-7. PubMed ID: 10547818
    [No Abstract]   [Full Text] [Related]  

  • 4. Efficacy of ophthalmic solutions to detach adhering Pseudomonas aeruginosa from contact lenses.
    Landa AS; van der Mei HC; van Rij G; Busscher HJ
    Cornea; 1998 May; 17(3):293-300. PubMed ID: 9603386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced bacterial biofilm control using electromagnetic fields in combination with antibiotics.
    McLeod BR; Fortun S; Costerton JW; Stewart PS
    Methods Enzymol; 1999; 310():656-70. PubMed ID: 10547827
    [No Abstract]   [Full Text] [Related]  

  • 6. Nanoscale investigation on Pseudomonas aeruginosa biofilm formed on porous silicon using atomic force microscopy.
    Kannan A; Karumanchi SL; Krishna V; Thiruvengadam K; Ramalingam S; Gautam P
    Scanning; 2014; 36(5):551-3. PubMed ID: 25042006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Titanium Surface Chemical Composition Interferes in the Pseudomonas aeruginosa Biofilm Formation.
    Nunes Filho A; Aires MM; Braz DC; Hinrichs R; Macedo AJ; Alves C
    Artif Organs; 2018 Feb; 42(2):193-199. PubMed ID: 29436026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of surface roughness and bacterial adhesion between cosmetic contact lenses and conventional contact lenses.
    Ji YW; Cho YJ; Lee CH; Hong SH; Chung DY; Kim EK; Lee HK
    Eye Contact Lens; 2015 Jan; 41(1):25-33. PubMed ID: 25536530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steady-state biofilm: practical and theoretical models.
    Dibdin G; Wimpenny J
    Methods Enzymol; 1999; 310():296-322. PubMed ID: 10547801
    [No Abstract]   [Full Text] [Related]  

  • 10. Composition of artificial tear solution affects in vitro Pseudomonas aeruginosa biofilm formation on silicone hydrogel lens.
    Yadav MK; Chuck RS; Park CY
    J Ocul Pharmacol Ther; 2013; 29(6):591-4. PubMed ID: 23442006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biofilm-forming capacity of Staphylococcus epidermidis, Staphylococcus aureus, and Pseudomonas aeruginosa from ocular infections.
    Hou W; Sun X; Wang Z; Zhang Y
    Invest Ophthalmol Vis Sci; 2012 Aug; 53(9):5624-31. PubMed ID: 22736609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasma surface modification of rigid contact lenses decreases bacterial adhesion.
    Wang Y; Qian X; Zhang X; Xia W; Zhong L; Sun Z; Xia J
    Eye Contact Lens; 2013 Nov; 39(6):376-80. PubMed ID: 24172065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface charge modification decreases Pseudomonas aeruginosa adherence in vitro and bacterial persistence in an in vivo implant model.
    Kao WK; Gagnon PM; Vogel JP; Chole RA
    Laryngoscope; 2017 Jul; 127(7):1655-1661. PubMed ID: 28295372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro methods to study staphylococcal biofilm formation.
    Cramton SE; Gerke C; Götz F
    Methods Enzymol; 2001; 336():239-55. PubMed ID: 11398402
    [No Abstract]   [Full Text] [Related]  

  • 15. Studying initial phase of biofilm formation: molecular interaction of host proteins and bacterial surface components.
    Amano A; Nakagawa I; Hamada S
    Methods Enzymol; 1999; 310():501-13. PubMed ID: 10547814
    [No Abstract]   [Full Text] [Related]  

  • 16. Pseudomonas aeruginosa attachment and biofilm development in dynamic environments.
    Ramsey MM; Whiteley M
    Mol Microbiol; 2004 Aug; 53(4):1075-87. PubMed ID: 15306012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the population dynamics within a Pseudomonas aeruginosa biofilm using a flow based biofilm model system and flow cytometric evaluation of cellular physiology.
    Wojciech J; Kamila M; Wojciech B
    Biofouling; 2018 Sep; 34(8):835-850. PubMed ID: 30332894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of biofilm from contact lens storage cases.
    Wu YT; Zhu H; Willcox M; Stapleton F
    Invest Ophthalmol Vis Sci; 2010 Dec; 51(12):6329-33. PubMed ID: 20720230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acceleration of the formation of biofilms on contact lens surfaces in the presence of neutrophil-derived cellular debris is conserved across multiple genera.
    Patel NB; Hinojosa JA; Zhu M; Robertson DM
    Mol Vis; 2018; 24():94-104. PubMed ID: 29422767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial and fungal biofilm formation on contact lenses and their susceptibility to lens care solutions.
    Kackar S; Suman E; Kotian MS
    Indian J Med Microbiol; 2017; 35(1):80-84. PubMed ID: 28303823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.