These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 10548328)

  • 1. Application of a novel modeling method to the nonstationary properties of potentiation in the rabbit hippocampus.
    Iatrou M; Berger TW; Marmarelis VZ
    Ann Biomed Eng; 1999; 27(5):581-91. PubMed ID: 10548328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of nonlinear nonstationary dynamic systems with a novel class of artificial neural networks.
    Iatrou M; Berger TW; Marmarelis VZ
    IEEE Trans Neural Netw; 1999; 10(2):327-39. PubMed ID: 18252530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the nonlinear properties of the in vitro hippocampal perforant path-dentate system using multielectrode array technology.
    Dimoka A; Courellis SH; Gholmieh GI; Marmarelis VZ; Berger TW
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):693-702. PubMed ID: 18270006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parallel activation of field CA2 and dentate gyrus by synaptically elicited perforant path volleys.
    Bartesaghi R; Gessi T
    Hippocampus; 2004; 14(8):948-63. PubMed ID: 15390176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical model of the population dynamics of hippocampal dentate granule cells.
    Chauvet GA; Berger TW
    Hippocampus; 2002; 12(5):698-712. PubMed ID: 12440584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Medial and lateral perforant path evoked potentials are selectively modulated by pairing with glutamatergic activation of locus coeruleus in the dentate gyrus of the anesthetized rat.
    Edison HT; Harley CW
    Hippocampus; 2012 Mar; 22(3):501-9. PubMed ID: 21240916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-term potentiation recruits a trisynaptic excitatory associative network within the mouse dentate gyrus.
    Kleschevnikov AM; Routtenberg A
    Eur J Neurosci; 2003 Jun; 17(12):2690-702. PubMed ID: 12823476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous and synaptic input from granule cells and the perforant path to dentate basket cells in the rat hippocampus.
    Kneisler TB; Dingledine R
    Hippocampus; 1995; 5(3):151-64. PubMed ID: 7550611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel network for nonlinear modeling of neural systems with arbitrary point-process inputs.
    Alataris K; Berger TW; Marmarelis VZ
    Neural Netw; 2000 Mar; 13(2):255-66. PubMed ID: 10935764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the nonlinear dynamic interactions of afferent pathways in the dentate gyrus of the hippocampus.
    Dimoka A; Courellis SH; Marmarelis VZ; Berger TW
    Ann Biomed Eng; 2008 May; 36(5):852-64. PubMed ID: 18299993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Idazoxan increases perforant path-evoked EPSP slope paired pulse inhibition and reduces perforant path-evoked population spike paired pulse facilitation in rat dentate gyrus.
    Knight J; Harley CW
    Brain Res; 2006 Feb; 1072(1):36-45. PubMed ID: 16426582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of early isolation on the synaptic function in the dentate gyrus and field CA1 of the guinea pig.
    Bartesaghi R
    Hippocampus; 2004; 14(4):482-98. PubMed ID: 15224984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Million-Plus Neuron Model of the Hippocampal Dentate Gyrus: Critical Role for Topography in Determining Spatiotemporal Network Dynamics.
    Hendrickson PJ; Yu GJ; Song D; Berger TW
    IEEE Trans Biomed Eng; 2016 Jan; 63(1):199-209. PubMed ID: 26087482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excitability changes within transverse lamellae of dentate granule cells and their longitudinal spread following orthodromic or antidromic activation.
    Lømo T
    Hippocampus; 2009 Jul; 19(7):633-48. PubMed ID: 19115390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ipsilateral associational pathway in the dentate gyrus: an excitatory feedback system that supports N-methyl-D-aspartate-dependent long-term potentiation.
    Hetherington PA; Austin KB; Shapiro ML
    Hippocampus; 1994 Aug; 4(4):422-38. PubMed ID: 7874234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear systems analysis of the hippocampal perforant path-dentate projection. I. Theoretical and interpretational considerations.
    Sclabassi RJ; Eriksson JL; Port RL; Robinson GB; Berger TW
    J Neurophysiol; 1988 Sep; 60(3):1066-76. PubMed ID: 3171656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path.
    Bliss TV; Lomo T
    J Physiol; 1973 Jul; 232(2):331-56. PubMed ID: 4727084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Medial septal projections to the dentate gyrus of the rat: electrophysiological analysis of distribution and plasticity.
    McNaughton N; Miller JJ
    Exp Brain Res; 1984; 56(2):243-56. PubMed ID: 6090194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phasic boosting of medial perforant path-evoked granule cell output time-locked to spontaneous dentate EEG spikes in awake rats.
    Bramham CR
    J Neurophysiol; 1998 Jun; 79(6):2825-32. PubMed ID: 9636089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterosynaptic changes accompany long-term but not short-term potentiation of the perforant path in the anaesthetized rat.
    Abraham WC; Bliss TV; Goddard GV
    J Physiol; 1985 Jun; 363():335-49. PubMed ID: 2991506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.