These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 10548371)

  • 21. The contribution of spontaneous otoacoustic emissions to the click evoked otoacoustic emissions.
    Kulawiec JT; Orlando MS
    Ear Hear; 1995 Oct; 16(5):515-20. PubMed ID: 8654906
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effects of aging on otoacoustic emissions.
    Stover L; Norton SJ
    J Acoust Soc Am; 1993 Nov; 94(5):2670-81. PubMed ID: 8270743
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Click- and tone-burst-evoked otoacoustic emissions in normally hearing ears and in ears with high-frequency sensorineural hearing loss.
    Hauser R; Probst R; Löhle E
    Eur Arch Otorhinolaryngol; 1991; 248(6):345-52. PubMed ID: 1930984
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spontaneous otoacoustic emissions in heterosexuals, homosexuals, and bisexuals.
    McFadden D; Pasanen EG
    J Acoust Soc Am; 1999 Apr; 105(4):2403-13. PubMed ID: 10212421
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Volterra Slice otoacoustic emissions recorded using maximum length sequences from patients with sensorineural hearing loss.
    de Boer J; Thornton AR
    Hear Res; 2006 Sep; 219(1-2):121-36. PubMed ID: 16887305
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An investigation of normally hearing subjects with tinnitus.
    McKee GJ; Stephens SD
    Audiology; 1992; 31(6):313-7. PubMed ID: 1492815
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evoked otoacoustic emission: behaviour under the forward masking paradigm.
    Kevanishvili Z; Gobsch H; Gvelesiani T; Gamgebeli Z
    ORL J Otorhinolaryngol Relat Spec; 1992; 54(5):229-34. PubMed ID: 1488243
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of atmospheric pressure variation on spontaneous, transiently evoked, and distortion product otoacoustic emissions in normal human ears.
    Hauser R; Probst R; Harris FP
    Hear Res; 1993 Sep; 69(1-2):133-45. PubMed ID: 8226333
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Low-frequency otoacoustic emissions in schoolchildren measured by two commercial devices.
    Jedrzejczak WW; Piotrowska A; Kochanek K; Sliwa L; Skarzynski H
    Int J Pediatr Otorhinolaryngol; 2013 Oct; 77(10):1724-8. PubMed ID: 23972827
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of middle-ear effusion on otoacoustic emissions.
    Yeo SW; Park SN; Park YS; Suh BD
    J Laryngol Otol; 2002 Oct; 116(10):794-9. PubMed ID: 12437833
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Audiometric predictions using stimulus-frequency otoacoustic emissions and middle ear measurements.
    Ellison JC; Keefe DH
    Ear Hear; 2005 Oct; 26(5):487-503. PubMed ID: 16230898
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spontaneous otoacoustic emissions in humans with endolymphatic hydrops.
    Haginomori SI; Makimoto K; Tanaka H; Araki M; Takenaka H
    Laryngoscope; 2001 Jan; 111(1):96-101. PubMed ID: 11192908
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Changes in otoacoustic emissions and high-frequency hearing thresholds in children and adolescents.
    Groh D; Pelanova J; Jilek M; Popelar J; Kabelka Z; Syka J
    Hear Res; 2006 Feb; 212(1-2):90-8. PubMed ID: 16364580
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Distortion product otoacoustic emissions and tympanometric measurements in an adult population-based study.
    Uchida Y; Ando F; Nakata S; Ueda H; Nakashima T; Niino N; Shimokata H
    Auris Nasus Larynx; 2006 Dec; 33(4):397-401. PubMed ID: 16753276
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of static middle ear pressure on transiently evoked otoacoustic emissions and distortion products.
    Plinkert PK; Bootz F; Vossieck T
    Eur Arch Otorhinolaryngol; 1994; 251(2):95-9. PubMed ID: 8024768
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multi-variant analysis of otoacoustic emissions and estimation of hearing thresholds: transient evoked otoacoustic emissions.
    Vinck BM; Van Cauwenberge PB; Corthals P; De Vel E
    Audiology; 1998; 37(6):315-34. PubMed ID: 9888189
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Contralateral suppression of transient-evoked otoacoustic emissions in children with sickle cell disease.
    Stuart A; Preast JL
    Ear Hear; 2012; 33(3):421-9. PubMed ID: 22246207
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of spontaneous otoacoustic emissions on distortion product otoacoustic emission amplitudes.
    Ozturan O; Oysu C
    Hear Res; 1999 Jan; 127(1-2):129-36. PubMed ID: 9925024
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Otoacoustic emissions from ears with spontaneous activity behave differently to those without: Stronger responses to tone bursts as well as to clicks.
    Jedrzejczak WW; Kochanek K; Skarzynski H
    PLoS One; 2018; 13(2):e0192930. PubMed ID: 29451905
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interrelationships between spontaneous and low-level stimulus-frequency otoacoustic emissions in humans.
    Bergevin C; Fulcher A; Richmond S; Velenovsky D; Lee J
    Hear Res; 2012 Mar; 285(1-2):20-8. PubMed ID: 22509533
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.