These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 10548372)

  • 1. Reduced àudiogram ripple' in normally-hearing subjects with weak otoacoustic emissions.
    Kapadia S; Lutman ME
    Audiology; 1999; 38(5):257-61. PubMed ID: 10548372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On a possible prognostic value of otoacoustic emissions: a study on patients with sudden hearing loss.
    Hoth S
    Eur Arch Otorhinolaryngol; 2005 Mar; 262(3):217-24. PubMed ID: 15133692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Audiometric predictions using stimulus-frequency otoacoustic emissions and middle ear measurements.
    Ellison JC; Keefe DH
    Ear Hear; 2005 Oct; 26(5):487-503. PubMed ID: 16230898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Audiogram fine structure and spontaneous otoacoustic emissions in patients with Menière's disease.
    Wiebe Horst J; de Kleine E
    Audiology; 1999; 38(5):267-70. PubMed ID: 10548374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distortion product otoacoustic emissions for hearing threshold estimation and differentiation between middle-ear and cochlear disorders in neonates.
    Janssen T; Gehr DD; Klein A; Müller J
    J Acoust Soc Am; 2005 May; 117(5):2969-79. PubMed ID: 15957767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Otoacoustic emissions in a hearing conservation program: general applicability in longitudinal monitoring and the relation to changes in pure-tone thresholds.
    Helleman HW; Jansen EJ; Dreschler WA
    Int J Audiol; 2010 Jun; 49(6):410-9. PubMed ID: 20192875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intensity discrimination, temporal integration and gap detection by normally-hearing subjects with weak and strong otoacoustic emissions.
    Smurzynski J; Probst R
    Audiology; 1999; 38(5):251-6. PubMed ID: 10548371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early Indices of Reduced Cochlear Function in Young Adults with Type-1 Diabetes Revealed by DPOAE Fine Structure.
    Spankovich C; Long GR; Hood LJ
    J Am Acad Audiol; 2019 Jun; 30(6):459-471. PubMed ID: 30461415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient otoacoustic emissions and audiogram fine structure in the extended high-frequency region.
    Alenzi H; Lineton B
    Int J Audiol; 2021 Dec; 60(12):985-994. PubMed ID: 33779459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of inner ear hearing loss on delayed otoacoustic emissions (TEOAE) and distortion products (DPOAE)].
    Hoth S
    Laryngorhinootologie; 1996 Dec; 75(12):709-18. PubMed ID: 9081275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous otoacoustic emissions and relaxation dynamics of long decay time OAEs in audiometrically normal and impaired subjects.
    Sisto R; Moleti A; Lucertini M
    J Acoust Soc Am; 2001 Feb; 109(2):638-47. PubMed ID: 11248970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tone-burst and click-evoked otoacoustic emissions in subjects with hearing loss above 0.25, 0.5, and 1 kHz.
    Jedrzejczak WW; Kochanek K; Trzaskowski B; Pilka E; Skarzynski PH; Skarzynski H
    Ear Hear; 2012; 33(6):757-67. PubMed ID: 22710662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Click- and tone-burst-evoked otoacoustic emissions in normally hearing ears and in ears with high-frequency sensorineural hearing loss.
    Hauser R; Probst R; Löhle E
    Eur Arch Otorhinolaryngol; 1991; 248(6):345-52. PubMed ID: 1930984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distortion product otoacoustic emissions and tympanometric measurements in an adult population-based study.
    Uchida Y; Ando F; Nakata S; Ueda H; Nakashima T; Niino N; Shimokata H
    Auris Nasus Larynx; 2006 Dec; 33(4):397-401. PubMed ID: 16753276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Volterra Slice otoacoustic emissions recorded using maximum length sequences from patients with sensorineural hearing loss.
    de Boer J; Thornton AR
    Hear Res; 2006 Sep; 219(1-2):121-36. PubMed ID: 16887305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the spectral periodicity of transient-evoked otoacoustic emissions from normal and damaged cochleas.
    Avan P; Wit HP; Guitton M; Mom T; Bonfils P
    J Acoust Soc Am; 2000 Sep; 108(3 Pt 1):1117-27. PubMed ID: 11008814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-frequency hearing impairment assessed with cochlear microphonics.
    Zhang M
    Acta Otolaryngol; 2012 Sep; 132(9):967-73. PubMed ID: 22667466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of Minor Conductive Hearing Loss in Humans Using Distortion Product Otoacoustic Emissions.
    Marcrum SC; Kummer P; Steffens T
    Ear Hear; 2017; 38(4):391-398. PubMed ID: 28169838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-variant analysis of otoacoustic emissions and estimation of hearing thresholds: transient evoked otoacoustic emissions.
    Vinck BM; Van Cauwenberge PB; Corthals P; De Vel E
    Audiology; 1998; 37(6):315-34. PubMed ID: 9888189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sex-Related Cochlear Impairment in Cigarette Smokers.
    Lisowska G; Jochem J; Gierlotka A; Misiołek M; Ścierski W
    Med Sci Monit; 2017 Jan; 23():377-397. PubMed ID: 28110343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.