These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 10549005)

  • 21. A sustained release of lovastatin from biodegradable, elastomeric polyurethane scaffolds for enhanced bone regeneration.
    Yoshii T; Hafeman AE; Nyman JS; Esparza JM; Shinomiya K; Spengler DM; Mundy GR; Gutierrez GE; Guelcher SA
    Tissue Eng Part A; 2010 Jul; 16(7):2369-79. PubMed ID: 20205517
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis of biocompatible segmented polyurethanes from aliphatic diisocyanates and diurea diol chain extenders.
    Guelcher SA; Gallagher KM; Didier JE; Klinedinst DB; Doctor JS; Goldstein AS; Wilkes GL; Beckman EJ; Hollinger JO
    Acta Biomater; 2005 Jul; 1(4):471-84. PubMed ID: 16701828
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biodegradable polyurethanes: synthesis and applications in regenerative medicine.
    Guelcher SA
    Tissue Eng Part B Rev; 2008 Mar; 14(1):3-17. PubMed ID: 18454631
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microstructure design of biodegradable scaffold and its effect on tissue regeneration.
    Chen Y; Zhou S; Li Q
    Biomaterials; 2011 Aug; 32(22):5003-14. PubMed ID: 21529933
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Degradable block polyurethanes from nontoxic building blocks as scaffold materials to support cell growth and proliferation.
    Rechichi A; Ciardelli G; D'Acunto M; Vozzi G; Giusti P
    J Biomed Mater Res A; 2008 Mar; 84(4):847-55. PubMed ID: 17635022
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biodegradable injectable polyurethanes: synthesis and evaluation for orthopaedic applications.
    Adhikari R; Gunatillake PA; Griffiths I; Tatai L; Wickramaratna M; Houshyar S; Moore T; Mayadunne RT; Field J; McGee M; Carbone T
    Biomaterials; 2008 Oct; 29(28):3762-70. PubMed ID: 18632149
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vitro and in vivo cartilage engineering using a combination of chondrocyte-seeded long-term stable fibrin gels and polycaprolactone-based polyurethane scaffolds.
    Eyrich D; Wiese H; Maier G; Skodacek D; Appel B; Sarhan H; Tessmar J; Staudenmaier R; Wenzel MM; Goepferich A; Blunk T
    Tissue Eng; 2007 Sep; 13(9):2207-18. PubMed ID: 17678413
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spatially organized layers of cardiomyocytes on biodegradable polyurethane films for myocardial repair.
    McDevitt TC; Woodhouse KA; Hauschka SD; Murry CE; Stayton PS
    J Biomed Mater Res A; 2003 Sep; 66(3):586-95. PubMed ID: 12918042
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surface modification of polyurethane towards promoting the ex vivo cytocompatibility and in vivo biocompatibility for hypopharyngeal tissue engineering.
    Shen Z; Kang C; Chen J; Ye D; Qiu S; Guo S; Zhu Y
    J Biomater Appl; 2013 Nov; 28(4):607-16. PubMed ID: 23241963
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis of two-component injectable polyurethanes for bone tissue engineering.
    Bonzani IC; Adhikari R; Houshyar S; Mayadunne R; Gunatillake P; Stevens MM
    Biomaterials; 2007 Jan; 28(3):423-33. PubMed ID: 16979756
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural variants of biodegradable polyesterurethane in vivo evoke a cellular and angiogenic response that is dictated by architecture.
    Henry JA; Burugapalli K; Neuenschwander P; Pandit A
    Acta Biomater; 2009 Jan; 5(1):29-42. PubMed ID: 18823827
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Small caliber vascular grafts. Part I: state of the art.
    Zdrahala RJ
    J Biomater Appl; 1996 Apr; 10(4):309-29. PubMed ID: 8859403
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of a biodegradable electrospun polyurethane nanofiber scaffold: Mechanical properties and cytotoxicity.
    Yeganegi M; Kandel RA; Santerre JP
    Acta Biomater; 2010 Oct; 6(10):3847-55. PubMed ID: 20466079
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Synthesis, characterization and electrospinning of biodegradable polyurethanes based on poly(epsilon-caprolactone) and L-lysine diisocynate].
    Han J; Ye L; Zhang A; Feng Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Dec; 27(6):1274-9. PubMed ID: 21374978
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preparation, in vitro degradability, cytotoxicity, and in vivo biocompatibility of porous hydroxyapatite whisker-reinforced poly(L-lactide) biocomposite scaffolds.
    Xie L; Yu H; Yang W; Zhu Z; Yue L
    J Biomater Sci Polym Ed; 2016; 27(6):505-28. PubMed ID: 26873015
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The degradation and biocompatibility of pH-sensitive biodegradable polyurethanes for intracellular multifunctional antitumor drug delivery.
    Zhou L; Liang D; He X; Li J; Tan H; Li J; Fu Q; Gu Q
    Biomaterials; 2012 Mar; 33(9):2734-45. PubMed ID: 22236829
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrospun biodegradable calcium containing poly(ester-urethane)urea: synthesis, fabrication, in vitro degradation, and biocompatibility evaluation.
    Nair PA; Ramesh P
    J Biomed Mater Res A; 2013 Jul; 101(7):1876-87. PubMed ID: 23712992
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polymer-based composite scaffolds for tissue engineering.
    Gloria A; De Santis R; Ambrosio L
    J Appl Biomater Biomech; 2010; 8(2):57-67. PubMed ID: 20740467
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis, characterization and antioxidant activity of a novel electroactive and biodegradable polyurethane for cardiac tissue engineering application.
    Baheiraei N; Yeganeh H; Ai J; Gharibi R; Azami M; Faghihi F
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():24-37. PubMed ID: 25280676
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Use of monocyte/endothelial cell co-cultures (in vitro) and a subcutaneous implant mouse model (in vivo) to evaluate a degradable polar hydrophobic ionic polyurethane.
    McDonald SM; Matheson LA; McBane JE; Kuraitis D; Suuronen E; Santerre JP; Labow RS
    J Cell Biochem; 2011 Dec; 112(12):3762-72. PubMed ID: 21826703
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.