These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 10549005)

  • 41. Carbon nanotubes leading the way forward in new generation 3D tissue engineering.
    Hopley EL; Salmasi S; Kalaskar DM; Seifalian AM
    Biotechnol Adv; 2014; 32(5):1000-14. PubMed ID: 24858314
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications.
    Guan J; Fujimoto KL; Sacks MS; Wagner WR
    Biomaterials; 2005 Jun; 26(18):3961-71. PubMed ID: 15626443
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biodegradable and injectable cure-on-demand polyurethane scaffolds for regeneration of articular cartilage.
    Werkmeister JA; Adhikari R; White JF; Tebb TA; Le TP; Taing HC; Mayadunne R; Gunatillake PA; Danon SJ; Ramshaw JA
    Acta Biomater; 2010 Sep; 6(9):3471-81. PubMed ID: 20211278
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Three-dimensional biocompatible ascorbic acid-containing scaffold for bone tissue engineering.
    Zhang JY; Doll BA; Beckman EJ; Hollinger JO
    Tissue Eng; 2003 Dec; 9(6):1143-57. PubMed ID: 14670102
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cellular interactions with biodegradable polyurethanes formulated from L-tyrosine.
    Shah PN; Yun YH
    J Biomater Appl; 2013 May; 27(8):1017-31. PubMed ID: 22207610
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Application of an elastic biodegradable poly(L-lactide-co-epsilon-caprolactone) scaffold for cartilage tissue regeneration.
    Jung Y; Kim SH; You HJ; Kim SH; Kim YH; Min BG
    J Biomater Sci Polym Ed; 2008; 19(8):1073-85. PubMed ID: 18644232
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nanohydroxyapatite/poly(ester urethane) scaffold for bone tissue engineering.
    Boissard CI; Bourban PE; Tami AE; Alini M; Eglin D
    Acta Biomater; 2009 Nov; 5(9):3316-27. PubMed ID: 19442765
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biomaterials and Fabrication to Optimise Scaffold Properties for Musculoskeletal Tissue Engineering.
    Wheelton A; Mace J; Khan WS; Anand S
    Curr Stem Cell Res Ther; 2016; 11(7):578-84. PubMed ID: 27306403
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tissue ingrowth after implantation of a novel, biodegradable polyurethane scaffold for treatment of partial meniscal lesions.
    Verdonk R; Verdonk P; Huysse W; Forsyth R; Heinrichs EL
    Am J Sports Med; 2011 Apr; 39(4):774-82. PubMed ID: 21383084
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Resorbable glass-ceramic phosphate-based scaffolds for bone tissue engineering: synthesis, properties, and in vitro effects on human marrow stromal cells.
    Vitale-Brovarone C; Ciapetti G; Leonardi E; Baldini N; Bretcanu O; Verné E; Baino F
    J Biomater Appl; 2011 Nov; 26(4):465-89. PubMed ID: 20566654
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A three-phase, fully resorbable, polyester/calcium phosphate scaffold for bone tissue engineering: Evolution of scaffold design.
    Lickorish D; Guan L; Davies JE
    Biomaterials; 2007 Mar; 28(8):1495-502. PubMed ID: 17166580
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.
    Lu HH; El-Amin SF; Scott KD; Laurencin CT
    J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Plasma treatment for improving cell biocompatibility of a biodegradable polymer scaffold for vascular graft applications.
    Valence Sd; Tille JC; Chaabane C; Gurny R; Bochaton-Piallat ML; Walpoth BH; Möller M
    Eur J Pharm Biopharm; 2013 Sep; 85(1):78-86. PubMed ID: 23958319
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Calcified matrix production by SAOS-2 cells inside a polyurethane porous scaffold, using a perfusion bioreactor.
    Fassina L; Visai L; Asti L; Benazzo F; Speziale P; Tanzi MC; Magenes G
    Tissue Eng; 2005; 11(5-6):685-700. PubMed ID: 15998210
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In vivo evaluation of a bioactive scaffold for bone tissue engineering.
    Livingston T; Ducheyne P; Garino J
    J Biomed Mater Res; 2002 Oct; 62(1):1-13. PubMed ID: 12124781
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [In vivo tissue engineering: a new concept].
    Dong WR; Xiao YQ; Piao YJ; Chen YH
    Di Yi Jun Yi Da Xue Xue Bao; 2004 Sep; 24(9):969-74. PubMed ID: 15447838
    [TBL] [Abstract][Full Text] [Related]  

  • 57. From in vitro to in situ tissue engineering.
    Sengupta D; Waldman SD; Li S
    Ann Biomed Eng; 2014 Jul; 42(7):1537-45. PubMed ID: 24809723
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In vitro systems for tissue engineering.
    Godbey WT; Atala A
    Ann N Y Acad Sci; 2002 Jun; 961():10-26. PubMed ID: 12081857
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In vivo tissue engineering of musculoskeletal tissues.
    McCullen SD; Chow AG; Stevens MM
    Curr Opin Biotechnol; 2011 Oct; 22(5):715-20. PubMed ID: 21646011
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    Jana S; Lerman A
    Regen Med; 2020 Jan; 15(1):1177-1192. PubMed ID: 32100626
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.