BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 10549143)

  • 1. Influence of inorganic phosphate and energy state on force in skinned cardiac muscle from freshwater turtle and rainbow trout.
    Jensen MA; Gesser H
    J Comp Physiol B; 1999 Sep; 169(6):439-44. PubMed ID: 10549143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Force development, energy state and ATP production of cardiac muscle from turtles and trout during normoxia and severe hypoxia.
    Overgaard J; Gesser H
    J Exp Biol; 2004 May; 207(Pt 11):1915-24. PubMed ID: 15107445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cardiac force and high-energy phosphates under metabolic inhibition in four ectothermic vertebrates.
    Hartmund T; Gesser H
    Am J Physiol; 1996 Oct; 271(4 Pt 2):R946-54. PubMed ID: 8897986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Creatine kinase and mitochondrial respiration in hearts of trout, cod and freshwater turtle.
    Birkedal R; Gesser H
    J Comp Physiol B; 2003 Aug; 173(6):493-9. PubMed ID: 12856133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ca2+ activated myosin-ATPase in cardiac myofibrils of rainbow trout, freshwater turtle, and rat.
    Degn P; Gesser H
    J Exp Zool; 1997 Aug; 278(6):381-90. PubMed ID: 9262007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of high extracellular [K+] and adrenaline on force development, relaxation and membrane potential in cardiac muscle from freshwater turtle and rainbow trout.
    Nielsen JS; Gesser H
    J Exp Biol; 2001 Jan; 204(Pt 2):261-8. PubMed ID: 11136612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dependence of myosin-ATPase on structure bound creatine kinase in cardiac myofibrils from rainbow trout and freshwater turtle.
    Haagensen L; Jensen DH; Gesser H
    Comp Biochem Physiol A Mol Integr Physiol; 2008 Aug; 150(4):404-9. PubMed ID: 18515165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different effects of simple anoxic lactic acidosis and simulated in vivo anoxic acidosis on turtle heart.
    Shi H; Hamm PH; Lawler RG; Jackson DC
    Comp Biochem Physiol A Mol Integr Physiol; 1999 Feb; 122(2):173-80. PubMed ID: 10327616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes of intracellular milieu with fatigue or hypoxia depress contraction of skinned rabbit skeletal and cardiac muscle.
    Godt RE; Nosek TM
    J Physiol; 1989 May; 412():155-80. PubMed ID: 2600830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen consumption and force development in turtle and trout cardiac muscle during acidosis and high extracellular potassium.
    Kalinin A; Gesser H
    J Comp Physiol B; 2002 Feb; 172(2):145-51. PubMed ID: 11916108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preconditioning stimuli do not benefit the myocardium of hypoxia-tolerant rainbow trout (Oncorhynchus mykiss).
    Overgaard J; Stecyk JA; Gesser H; Wang T; Gamperl AK; Farrell AP
    J Comp Physiol B; 2004 May; 174(4):329-40. PubMed ID: 14999513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of mitochondrial energy production in cardiac cells of rainbow trout (Oncorhynchus mykiss).
    Birkedal R; Gesser H
    J Comp Physiol B; 2004 Apr; 174(3):255-62. PubMed ID: 14758500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tribute to P. L. Lutz: cardiac performance and cardiovascular regulation during anoxia/hypoxia in freshwater turtles.
    Overgaard J; Gesser H; Wang T
    J Exp Biol; 2007 May; 210(Pt 10):1687-99. PubMed ID: 17488932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of accumulation of sodium and calcium on contractile failure of the hypoxic/reoxygenated heart.
    Tanonaka K; Niwa T; Takeo S
    Jpn Heart J; 1996 Jan; 37(1):105-17. PubMed ID: 8632618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atrial bioenergetic variations in moderate hypoxia: danger or protective defense?
    Caparrotta L; Poja R; Ragazzi E; Froldi G; Pandolfo L; Prosdocimi M; Fassina G
    Basic Res Cardiol; 1989; 84(5):449-60. PubMed ID: 2818445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inorganic phosphate inhibits contractility and ATPase activity in skinned fibers from human myocardium.
    Schmidt-Ott SC; Bletz C; Vahl C; Saggau W; Hagl S; Rüegg JC
    Basic Res Cardiol; 1990; 85(4):358-66. PubMed ID: 2146947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of inorganic phosphate and creatine phosphate on force production in skinned muscles from rat ventricle.
    Kentish JC
    J Physiol; 1986 Jan; 370():585-604. PubMed ID: 3958986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlation of cardiac performance with cellular energetic components in the oxygen-deprived turtle heart.
    Stecyk JA; Bock C; Overgaard J; Wang T; Farrell AP; Pörtner HO
    Am J Physiol Regul Integr Comp Physiol; 2009 Sep; 297(3):R756-68. PubMed ID: 19587113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dependence upon high-energy phosphates of the effects of inorganic phosphate on contractile properties in chemically skinned rat cardiac fibres.
    Mekhfi H; Ventura-Clapier R
    Pflugers Arch; 1988 Apr; 411(4):378-85. PubMed ID: 3041367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dichloroacetate selectively improves cardiac function and metabolism in female and male rainbow trout.
    Battiprolu PK; Rodnick KJ
    Am J Physiol Heart Circ Physiol; 2014 Nov; 307(10):H1401-11. PubMed ID: 25217653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.